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EDITOR’S PREFACE

ArTER the death of Sir Arthur Eddington in November 1944, Miss Eddington and
the Syndics of the Cambridge University Press invited me to supervise the publication
of the manuscript of the present volume. I have followed the text without alteration
except in correcting obvious slips of the pen, making slight changes to remove
obscurities, and supplying references which Eddington had left blank. 1 have added
a few additional notes and have constructed an Index.

By way of general introduction, I may say that the work is complete in itself, and
practically replaces all the author’s previous writings on his theory of the constants
of Nature. Chapters 1—v follow closely the treatment adopted in his Dublin lectures
of 1943, and Chapters vi—vimr are devoted to the sedenion analysis which had been
expounded in his Relativity Theory of Protons and Electrons of 1936; but the rest of
the book is chiefly new matter, and contains developments of outstanding power and

interest. Those who desire a preliminary glance at the results may be advised to
turn to: t

(1) The table on page 66, which gives the values of the microscopic constants as
calculated by Eddington’s theory, compared with the observed values.

(ii) The similar table of molar and nuclear constants on page 105.

(iii) The first list of achievements of the theory in nuclear physics given on page 211:
the numerical comparisons will be found in the separate sections of Chapter ix,
Eddington’s intention having been to collect them, together with the discoveries of
Chapters x-X11, in a table in the part of the book which he did not live to complete.

- (iv) The results for the magnetic moments of the hydrogen atom and the neutron
on pages 249 and 251.

For a somewhat fuller introductory account of the theory, reference may be made
to an article in the Mathematical Gazette, 29 (October 1945), pp. 137-44.

Professor E. T. Copson, of University College, Dundee, in the University of
St Andrews, and Professor George Temple, F.R.S., Head of the mathematics
department in King’s College, London, have most kindly read the proof-sheets with

me. I wish also to acknowledge gratefully the help given by the Staff of the
Cambridge University Press.

EDMUND T. WHITTAKER
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Chapter 1
THE UNCERTAINTY OF THE REFERENCE FRAME

1. The uncertainty of the origin

The quantities occurring in the equations of mathematical physics relate partly to
physical objects and events and partly to a mathematical framework introduced for
.purposes of reference. Bothrelativity theory and quantum theory stress the distinction
between observables, i.e. quantities which could be ascertained by a specified obser-
vational procedure, and unobservables, i.e. quantities depending partly on the auxiliary
mathematical frame which cannot be the subject of actual observation. Unobservables
are used to systematise description and facilitate calculation, but they are eliminated
in the final steps of the calculation of observationally verifiable results.
In classifying quantities as observable or unobservable I shall follow current usage
rather than the most literal meaning of the terms. Rightly or wrongly, modern physics
j is not over-scrupulous in postulating measurements of a highly impracticable kind.
But although measurements are often very much idealised, it is recognised that
. idealisation must stop short of actual self-contradiction. Relativity theory and
} quantum theory have each laid down conditions of observability which are certainly
necessary if self-contradiction is to be avoided; and the term ‘observable’ will here
be understood to mean that the quantity satisfiés both tests.2

Relativity theory begins with a denial of absolute motion. An observed velocity
df/dt of a physical entity is necessarily relative to another physical entity. Likewise
an observed coordinate £ is a relative coordinate of two physical entities.

Quantum theory insists that the connection of a physical entity with the geometrical
frame of coordinates is governed by Heisenberg’s uncertainty principle. A particle is
not exactly locatable at a point in the geometrical frame, or in four dimensions as a
; world-line. It can only be assigned a probability distribution of position and velocity.
 Inmodern physics these two principles of observability have been applied separately
with very far-reaching results; but they have seldom been applied in combination even
| by those who profess to be developing a relativistic quantum theory. The combined

i

| principle is that a coordinate £ is observable only if it is a relative coordinate of two entities
| both, of which have uncertainty of position and momentum in the geometrical frame.

The same considerations apply to momenta and other observables. An observable
lis always a statistic of a double probability distribution.

The essential point is that an observable coordinate is measured, not from an
abstract mathematical point as origin, but from something which is involved physically
in the operation which furnishes the measure. Being involved physically it experiences

those incalculable reactions which limit the precision of our knowledge in the way
\Taid down by Heisenberg’s principle. We must therefore distinguish between the
| “physical origin’ from which an observable coordinate is measured, and the ‘geo-
[ metrical origin’ of the auxiliary mathematical frame. The latter, as already stated, is

3 QObservables and measurables will be fully treated in Chapter xirr, and a logically satisfactory
definition will then be given.

EFT I



2 Fundamental Theory.

eliminated in the final calculation of observationally verifiable results; being therefore
aloof from the rough-and-tumble of observational inquisition, it has a sharpness of
definition which contrasts with the blurring of all physical landmarks by probability
scatter.

Consider a system of particles with coordinates «,, ¥,, 2, (r =1,2,3,...) in the
geometrical frame. These coordinates are unobservables. To obtain physical, i.e. observ-
able, coordinates we must substitute for the geometrical origin an actual particle or
its equivalent, e.g. the centroid of a set of particles. Let the geometrical coordinates
of the physical origin be z,, ¥,, z,; these also are unobservable. But the relative
coordinates '

gr» Trs ér = Xp— %y, Ypr— Yo 2~ 2% (1'1)
are-observables.

Nominally the exact value of £, could be found by observation, at the expense of
infinite uncertainty of the conjugate momentum. Such a measurement would be
scientifically useless, since the coordinate would ingtantly become uncertain again;
it is the measurement of a careless experimenter who destroys his specimen by handling
it too roughly. Thus our knowledge of £, ,, {, at any time is described by a probability
distribution. A measurement of £, will give a value taken at random from the pre-
existing® probability distribution of £,; or equivalently it will give the distance from a
random point in the probability distribution of #, to a random point in the probability
distribution of z,.

The transformation of coordinates from z,, ¥,, 2, to &, 9,, {, is a change from an
origin fixed in the geometrical frame to an origin with a probability scatter in that
frame. It will be necessary later to make a special study of this type of transformation
which, of course, is beyond the scope of the ordinary theory of coordinate transforma-
tions. In particular, we shall obtain formulae for transforming a probability distribu-
tion of physical coordinates into a probability distribution of geometrical coordinates
or vice versa, and very much simpler formulae for transforming the probability
distribution of the conjugate momenta (§§ 37, 38). But to carry out these transforma-
tions it is necessary to know the distribution funection f(y, ¥,,7,) of the coordinates
of the physical origin. This function cannot be found observationally, because x,, ¥,, 2,
are unobservable. ‘ '

The coordinates postulated in the dynamical equations of wave mechanics must be
measured from a physical origin, since they and their conjugate momenta are assumed
to be observables, being in fact the typical observables of quantum theory. It will be
recalled that the wave-packets, whose propagation and diffusion are studied in wave
mechanics, are created by our observational measurements—or more strictly by our
becoming aware of the results of measurements and assessing the probability accord-
ingly—so that it is essential to distinguish the variates in which these concentrations
of probability can occur. ’

Thus in some, if not all, of the fundamental equations of quantum theory the
coordinates are measured from a physical origin. The urgent question arises: What is
this origin, and what distribution function f(x,, ¥,. 2,) has been assumed for it? Writers

& Aftor the measurement the information which it furnishes is used to reassess the vproba}bility. The
probability distribution therefore changes discontinuously at the moment when the observer becomes

“aware of the result of the measurement. Attention will be paid to this point in § 35, where a very im-
portant distinction between ‘structural theory’ and ‘predictive theory’ is introduced.

Iy



The Uncertainty of the Reference Frame 3

on quantum theory give no hint as to the physical origin they are employing. But their
equations can only be valid for some particular origin, since they are not of a form
which would be invariant for arbitrary changes of f.

2. The physical origin

The centroid of a large number of particles has the important statistical property
that (subject to certain conditions which are ordinarily fulfilled) the form of its prob-
ability distribution does not depend on the law of probability distribution of the
individual particles. The mean of a large number of uncorrelated variates x, has a
Gaussian distribution whatever, within reason, may be the distribution law of the
individual z,.

Thus if we employ the centroid of a large number of particles as our physical origin,
we have the immense advantage of starting with an a priori knowledge of the dis-
tribution of its geometrical coordinates z,, ¥,, 2y, complete except for the one disposable
constant in the Gaussian law. The distribution funection of x, is then 'v

fl) = (2m02)~+ -t

If we impose the condition that the distribution of the particles has spherical
symmetry, the formula is extended to three dimensions and becomes

(20, Yos 20) = (2m0®) 2 (@ U, /20", (2-1)

The standard deviation o, which is left to be determined later, will be called the
uncertainty constant of the physical reference frame.

Although the centroid is not directly indicated by a physical landmark, it is admissible
as a physical origin. Formally the observational procedure would be to measure the
coordinate £,, of the rth particle from each of the other particles in turn, and take the
mean £, = £,; the mean can be treated as equivalent to a single measurement from a,
mean particle at z,.

Throughout this book we shall employ a physical origin related to the geometrical
origin by the Gaussian distribution function (2-1), which is defined observationally
as the centroid of a system of n particles with a spherically symmetrical but otherwise
unrestricted probability distribution. The number » is always understood to be very
large. Sometimes this assemblage will be the principal subject of investigation; but,
if not, it is in the background, forming the standard environment (§7) of the small
object-system that is being particularly studied, _

The laws and constants that we derive are valid only on the understanding that the
measurements concerned in them are referred to the physical frame defined by (2-1).
Since writers on quantum theory leave us to guess what frame they are using, there is
no guarantee that our frame will turn out to be the one in which the current quantum
equations are valid. We are under no obligation to prove this identity in advance; but
as a matter of practical expediency it is very desirable that the frames should agree.
By making an early junction with current quantum theory we are saved an over-
whelming amount of labour, because we can then take over unchanged all the specialised
investigations needed to complete the application of our results to practical experi-
ments; and it is therefore good policy to avoid unnecessary differences of form and
definitions. The carrying out of this policy involves a good deal of ‘intelligent

I-2



4 Fundamental Theory

anticipation’, and steps which determine the form of the theory often have to be
justified from this point of view. The reader interested in logical rigour should bear in
mind that the development of the theory turns partly on strict deduction and partly
on ultimate saving of labour. The former part requires proof, the latter part success.

Fortunately, we can foresee that current quantum theory must be based on a physical
origin which is the centroid of a large number of particles. For if it were otherwise, the
equations could be of no practical use. Since x,, ¥,, 7, are unobservable, there is no
way of determining f(xy, %o, 29} by observation. It is only when we have theoretical
information, such as that furnished by ‘ the law of large numbers’, that we can associate
a definite form of f with an observationally defined point. Thus, if quantum theory
postulates.a non-Gaussian form of f, it is impossible to recognise observationally the
measured coordinates to which it applies, and there is no means of connecting its
predictions with actual experiment. This is a reductio ad absurdum, because there is
no doubt as to the general agreement of current quantum theory with experiment.

The foregoing may be deseribed as the problem of ‘anchoring’ an ideal mathematical
frame in the world of observational measurement. Anchoring is made possible by the
statistical cancelling of fluctuations in large assemblages; and the small residual
fluctuation that remains is necessarily Gaussian.

Starting with an abstract geometrical coordinate frame, we step over from pure
geometry into physics by introducing a physical coordinate frame whose origin has the
probability distribution (2-1) relative to the geometrical origin. We shall find that the
standard deviation o of this distribution puts the scale into the physical frame and
everything constructed in the physical frame, whether it be a nucleus, an atom, a
crystal or the whole extent of physical space. The main problem in this book is to
investigate the way in which the extensions of these various structures are related to
o, and to evaluate the numerical ratios for some of the simpler structures.

In stepping over from the geometrical to the physical frame we appear to have
freedom of choice of o. But the freedom is illusory, because o can only be measured in
terms of the extensions of physical structures whose scale it has itself determined. To
double ¢ would double all linear constants such as the wave-lengths of the hydrogen
spectrum; thus the measure of o in terms of the wave-length of the H, line as unit
would remain unaltered. '

3. The Bernoulli fluctuation

Consider a very large number of particles NV which all have the same probability
distribution of coordinates. Let ¥ be a volume, fixed in the geometrical frame, extensive
enough to include a large number of them. Each particle has the same probability p
of being within ¥, and the mean or expectation number in ¥, is ny = pN. Let the actual
number in ¥, be n, and set

n = ng+1.

Then, by James Bernoulli’s theorem, the fluctuation  has the distribution law
F@) = (2oL —mg/W)}+ evina—no, (311)

If N/ny~> 00, this becomes _
Fooly) = (2mng)Hev'Em, (3-12)



The Uncertainty of the Reference Frame -5

>~ Both distributions are Gaussian, and their standard deviations are (n,—n2/N)

and n§. Hence (3-12) can be obtained by compounding with (3-11) an independent
Gaussian fluctuation with standard deviation (n}/N)* and distribution law

‘ Joly) = (2mnf| Ny =NV, | (313)
Let £ = y/n,, so that n = ny(1+§). ‘ (3-2)
Then the distribution law of { corresponding to f,(y) is

9:(8) = (2m[N)~* eV, (3:3) .

We thus resolve the Bernoulli fluctuation into two independent Gaussian fluctua-
tions, namely, an ‘ordinary fluctuation’ (3-12) arising from the finiteness of n, and an
‘extraordinary fluctuation’ (3-3) arising from the finiteness of N. The extraordinary
fluctuation is to be combined nega,tively, 80 as to give a total fluctuation less than the
ordinary fluctuation.

We shall apply this analysis to a system of particles which is in self- ethbnum, SO .
that the probability distribution is steady. According to relativity theory the only
distribution of matter which can be in self-equilibrium is a uniform distribution filling
a hyperspherical space. This is the well-known ‘Einstein universe’. The hyperspherical
(or, as it is commonly called, spherical) space has finite volume; so that N/n, is finite.
The infinite Euclidean space of classical theory corresponds to the limit when N /ny— o0
and the extraordinary fluctuation vanishes. Thus, in passing from classical to relativity
theory by taking N finite, two changes are made: the space becomes curved, and an
extraordinary fluctuation is introduced. These, however, are not two changes but one.
We are going to show thot the space curvature is simply a way of taking into account the
extraordinary fluctuation.

Henceforth we shall deal with the extraordinary fluctuation alone. (The ordinary
fluctuation, being common to relativity theory and classical theory, requires no special
attention.) Denoting the particle density »/V, by s, the fiuctuation changes an exact
particle density s, into a slightly uncertain density

= 30(1+§). (3-41)

Instead of considering an uncertain number of particles » in a fixed volume V, we can

consider an exact number of particles n, and transfer the uncertainty to the containing
volume V, where n/V, = n,/V. Setting

V =T/(1+ep, (3-42)

the uncertainty is now contained in a linear scale factor 1 +e.

The distribution function g,({) can be transformed into a distribution function of e.
If we-had to transform a distribution over discrete values of { into a distribution over
corresponding values of e, the relation would be (1 +§) = (1 +¢€)%. But, in transforming
a continuous distribution function, discrete values are replaced by constant ranges,
and we have to insert a factor proportional to de/d{ to transform constant ranges of ¢
into the non-constant ranges of ¢ which correspond to constant ranges of {. The relation

is therefore (1+&)d¢ = constant x (1 +¢)?de,
which gives on integration (1482 =(1+e) (3-43)
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For the distribution function g,({) the values of { which have sensible probability are
of order N—*, and are therefore extremely small—actually about 10-3%. Hence (3-43)
becomes with ample approximation { = 2¢. By (3-3), the standard deviation of { is
N-%; hence the standard deviation of ¢ ig

o, = 1/2N. (35) |

The extraordinary fluctuation of the particle density can therefore be represented by
& scale fluctuation with the standard deviation (3-5).

The geometrical frame is our standard of fixity when we speak of the uncertainties
of physical quantities; and the ideal exact scale € = 0 is the scale on which the geo-
metrical coordinates are measured. In order to take account of the extraordinary
fluctuation as a scale uncertainty, we must introduce the uncertain scale 1'+¢ in the
system of the physical coordinates £, 7, {. Considering a point distant r from the
origin, the difference x,, ¥y, 2, = £ —x, 7 —y, { — 2 between its physical and geometrical
coordinates will now consist of

(@) a fluctuation with standard deviation o in all directions, due to the uncertainty
of the position of the physical origin, and

(b) a fluctuation with standard deviation o, 7 in the radial direction only, due to the
uncertainty of the scale of measurement of 7.

Remembering that the extraordinary fluctuation represented by (b) is to be com-
bined negatively with other sources of fluctuation, the resultant standard deviation is

radial (g2 —o2r2)}, transverse o. (3-6)

We shall eall (3-6) the local uncertainty of the physical reference frame. It has been
derived as a combination of the uncertainty of a distant origin with the uncertainty
of scale; but it can be described more compactly as the uncertainty of a local physical
origin relative to a local geometrical origin. We could, by making a local coordinate
transformation, introduce ‘natural coordinates’ such that the local uncertainty in all
directions is restored to the original value o; these coordinates are applicable so long
as the distance r from the local origin is small enough for o, to be neglected. Indepen-
dently of coordinate systems, the local uncertainty in a given direction defines an extension
which might be adopted as the unit for measuring lengths in that direction in that locality.
We shall call this the o-system of defining lengths, or briefly ‘the ¢-metric’.

Let ds be the length, reckoned in o-metrie, of a line-element dr, rd@, rsin 6d¢p. By
(3-6) the lengths of radial and transverse elements are proportional to dr/(c?—o2r2)3,
rdf/o, rsinGdgjo; so that the general formula is

2 2 2 2 a2 2 .
ds? = T—( 2/ 5y 5 +12d0% +r¥sin® G d g2, (3-7)
This is the well-known formula for the line-element in spherical space of radius
Ry = o/o,. Hence by (3-5)
o = Ry/2/N. (3:8)

It will appear in the next section that the o-metric is the recognised metric in physical
theory; so that we have in this way reached the usual description of space (occupied
by a steady distribution of particles) as spherical, and have found the equation (3-8)

I



The Uncertainty of the Reference Frame 7

which determines the uncertainty constant o in terms of the cosmological constants
Ry, N.

The scale uncertainty is naturally interpreted as the result of measuring with a
standard whose actual extension (in the geometrical coordinate frame) is uncertain
to this extent. A standard whose uncertainty is no more than 1 part in 103 is very much
idealised; but there is no self-contradiction in assigning to a physical system character-
istics supposed to have been measured by such a standard. If, on the other hand, the
standard is supposed to be exact, it is contradictory to suppose that anything has been
measured with it.

If a measured distance » has been determined with a standard which has a fluctuation
o, the standard deviation of » cannot be less-than o,7. We have applied the standard
deviation o, negatively; this means that we have corrected the whole observed fluctua-
tion of r for the part attributable to uncertainty of the standard. We first represent the
observational measures, without any correction, in flat physical space. Recognising
that the probability scatter is partly due to fluctuation of the standard employed (it
being impossible to make measures at all unless the standard is inexact), we desire to
eliminate this part so as to obtain what we should regard as the true distribution
corresponding to an exact standard. This elimination changes the o-metric so that the
flat space is transformed into the spherical space (3-7). Thus the cosmical curvature
replaces the fluctuation of the standard; and when we use the relativity representation
of the universe in spherical space the scale is to be treated as exact.

This elimination of o, is statistical, so that the curvature representation is suitable
for molar physics, which is concerned with statistical averages of large numbers of
particles. But a merely statistical elimination is not good enough for microscopic
physics. Consequentlyin quantum theory we shall notuse the curvature representation.
We shallrevert to flat space, and take account of scale fluctuation in another way (§ 24).

4. The standard of length*

In order to make it clear that the o-metric is the recognised metric in relativity
theory, quantum theory and practical metrology, we consider the conditions that must
be fulfilled by an ultimate standard of length. The Paris metre is not accepted as an
ultimate standard; the mere fact that anxiety is felt as to its constancy shows that
physicists have in mind a more trustworthy standard by which it might be judged.
iThe ultimate standard must be available at all times and places. We require a physical
structure, not necessarily permanent or transportable, but constructable at any time
and place from a recorded specification.

The form of the specification is decided by the condition that the definition of length
(and a corresponding definition of time interval) is required at the very beginning of
physics; because the definitions of other physical quantities assume that a system of
spaee and time measurement is already in existence. It would therefore be a vicious
circle to use any ‘dimensional’ physical quantities in specifying the standard referred
to in the definition of length. The quantitative part of the specification must consist
entirely of pure numbers. The specification of physical structure by pure numbers—
numbers of elementary particlesin configurations or states defined by quantum numbers

@ This subject is treated at greater length in The Philosophy of Physical Science, pp. 70-85.



8 Fundamental Theory

—is developed in quantum theory. Accordingly, the standard of length must be a quantum-
specified structure.

The equations of quantum theory determine the various spatial extensions in
quantum-specified systems as fixed multiples of a unit #/m,c. Whether or not this unit_-
is supposed to be constant at all times and places, the ratio of two quantum-specified
extensions at the same time and place is a fixed constant. Thus all quantum-specified
structures give equivalent metrics, differing from one another only by a constant
conversion factor.

It remains to show that the unique quantum-specified metric is the same as the
o-metric. This follows at once if we can show that any one quantum-specified extension
has a mathematically calculable, and therefore fixed, ratio to the local uncertainty .
Since the main purpose of this book is to investigate in detail the way in which the
extensions of various simple structures are related to o, ample proof will be furnished
in due course. For example, we shall find that the Rydberg constant for hydrogen 3,
which is the reciprocal of a length, is given by ‘

g1 = 167 ,/5

.1362.137. 0. (4-1)
Thus the use of the wave-length of the H, line as a standard of length available at all
times and places is equivalent to using the o-metric.

For molar measurement the standard is commonly embodied in & rod, which is
understood to be calibrated by means of the H, (or some other quantum-specified)
wave-length. Or we may use the extension of a fixed number of lattice spaces in a
specified kind of crystal at a temperature specified in some absolute way. The standard '
of time is likewise defined by periods of light waves or of the vibrations of a crystal.
Evidently, in replacing the Paris metre by a wave-length or crystal-lattice standard,
and the earth’s erratic time-keeping by a quartz clock, the practical metrologist
accepts the quantum-specified standard as his ideal, so that there is no difference in
the accepted meaning of length and time-interval in theoretical and experimental
physics.

The ratio of the wave-length to the period of H, light is the velocity of H, light.
Thus it follows from the definition of the ultimate standards of length and time that
the velocity of light is constant everywhere and everywhen. Alleged experimental
evidence for a rather large change of the velocity of light in the last 70 years has been
put forward. From the nature of the case there can be no such evidence; if anything is
put in doubt by the experimental results, it is the agreement of the standards used by
the various observers. More baleful, because it has received more credence, is the
speculation of various writers that the velocity of light has changed slowly in the long
periods of cosmological time, which has seriously distracted the sane development of
cosmological theory. The speculation is nonsensical because a change of the velocity
of light is self-contradictory. ‘

Itis perhaps not superfluous to add that no question arises as to whether the standard
here defined really has the same length at all times and places. The question implies
that there is a more ultimate standard, invested with ‘reality —whatever that may
mean—which would show up the variations, if any, of the quantum-specified standard.
The concept of length must be kept free from this kind of metaphysical embroidery.



The Uncertainty of the Reference Frame 9

Length, like other physical quantities, is a term introduced for the purpose of succinct
description of observational knowledge; and, if it is defined appropriately for this
purpose, no other criticism is relevant.

5. Range of nuclear forces and the recession of the galaxies

The simplest manifestation of the uncertainty of the local physical origin occurs
when we consider two particles very close together, as in a nucleus or in the close
encounters of two protons in scattering experiments. If £, £ are physical coordinates
of the two particles, their relative position is usually described by the coordinate-
difference £, = £, — £,. But it is also possible to measure the relative coordinate directly
from one particle to the other without the intermediary of an origin. The directly
measured relative coordinate will be called £/.. Both £, and &/, are observables, and
they have the same mean value; but their probability distributions are different, that
of £, having the greater spread. Thus the wave functions associated with them, and
the conjugate momenta, are different.

An observation of £, gives the distance from an undetermined point in the probability
distribution of the origin to an undetermined point in the probability distribution of
the particle. If £, is also measured, the measure has an independent starting point
in the probability distribution of the origin. Thus £;— £, will include the coordinate-
difference of two random points in the distribution of the origin; this is a quantity
having a Gaussian probability distribution with standard deviation o ,/2. By making
the measurements directly from one particle to the other we eliminate this source
of scatter; hence, in the notation of the theory of errors,

Ero =5 t0\2. (5-1)

This illustrates a principle of wide importance. The description of physical systems
by probability distributions requires precautions which are liable to be overlooked
because they have no counterpart in the classical conception of physies from which
most of our nomenclature is derived. Definitions have to be refined to take account of
distinctions unprovided for in classical terminology. This applies even to the distance
between two particles, where it is necessary to state explicitly which of two quantities

T = (Eh+7%h+Ch)F and i, = (§3+95+ Bt

is meant. The difference is insignificant unless we are dealing with distances of the
order of nuclear dimensions; but in the nucleus it is essential to distinguish r,, and rq,.
Thus, when a writer uses the term ‘range of nuclear forces’, we have to ask whether
he means range in r,, or range in ry,.

Normally the relative coordinates employed in quantum theory are £,,, 945, {0
In particular, the Coulomb energy is €?/r;,. The non-Coulombian energy, however,
is a singular energy associated with 1, = 0, i.e. with actual coincidence of the particles.
The whole electrical energy can therefore be expressed as e?/ry,+ Bd(ry,), where &
is Dirac’s d-function (§49). By (5-1) the values &1, %12 §12 = 0 correspond to
£19> M2 G1a = +04/2; so that the point r{, = 0 has a Gaussian probability distribution
with standard deviation o 4/2 over &5, 949, {15, and Bo(ry,) is transformed into Ae—"e%",
where k (which is ,/2 times the standard deviation) is equal to 20-. This is the form in
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which the non-Coulombian energy appears in the usual equations. We call % the
range constant of nuclear forces. By (3-8),

k = 20 = Ry/|N. (5-2)
The range is simply the effect of the uncertainty of the reference frame, which scatters
the singularity 73, = 0 into a Gaussian distribution of r,.

Since the range constant has been determined experimentally, chiefly from the
scattering of protons by protons, and the cogmological constants R,, N have been
determined by astronomical observation of the recession of the extra-galactic nebulae,
we are able, even at this early stage, to apply an observational test to the theory. The
well-known formula, first derived by Einstein in 1916, for the mass M of an Einstein
universe is KM = LR, (53)
where « is the constant of gravitation and ¢ the velocity of light. The number-of particles
(protons and electrons) being N, we have M = $Nm, where ais the mass of a hydrogen
atom. Hence

Ry/N = kmfmc? = 3-95 x 1053 cm. (5-41)
The experimental determination of the range constant from the scattering of protons
by protons gives Ro/yN =k = 1-9x 103 cm. (5-42)

From (5-41) and (5-42) we can obtain N and B, separately, and hence find the limiting
speed of recession of the galaxies which by Lemaitre’s formula is ¥ = ¢/Ry+/3. The
result is ¥, = 585 km. per sec. per megaparsec. The actual speed should be rather less
than the limiting speed, but the difference is not very important.* The observed value,
found by Hubble and Humason, is 560 km. per sec. per megaparsec.

The observational determinations of £ and 7, do not claim high accuracy; and an
agreement within 10 per cent would have been considered satisfactory. The test is
therefore rather rough. But it is of particular interest because it straddles the whole
range of physical systems from the nucleus to the cosmos.

Since k = 20, a much more accurate value of £ (correct to 8 significant figures if
we wish) can be obtained from (4-1). The result is % = 1-921 x 10-13, This gives
V, = 872-4 km. per sec. per megaparsec.

Reversing the argument, we can deduce from the observational data that the range
in 7y, is zero; so that non-Coulombian energy is definitely associated with a singularity
of r1,. Thus we need not hesitate to reject the ‘meson-field’ hypothesis altogether.
It is in any case quite unnecessary in genuinély relativistic quantum theory. It is not
an alternative way of taking into account the uncertainty of the origin, because it
gives an energy distribution 4e-* instead of 4e—71"%*p

6. Spherical space

The formula for ds in spherical space has alternative forms corresponding to different
definitions of the coordinate ». The form (3-7) is obtained when we project the points

& From our present knowledge of the average density of matter throughout space, it is estimated that
the present radius of the universe is 5R,. This will make the actual speed 30 km. per sec. per megaparsec
less than the limiting speed V. (Monthly Notices, B.A.S. 104, 203.)

b Tt may be expected that the shape of the non-Coulombian potential well will, at a not distant date,
be determined experimentally. This will provide a crucial test between the present theory and meson-
field theory.
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of spherical space orthogonally on the tangent flat space at the origin, and take the polar
coordinates in the tangent space as r, @, ¢. This leads to a simple graphical representa-
tion of our results.

We start with a geometrical origin P and rectangular coordinates z, y, 2 in flat space.
Let the coordinates of a particle at 7' be z,, ¥,, z,. When the extraordinary fluctuation
is represented by curvature, #,, y,, 2, are unaltered, but a fourth coordinate «, is intro-
duced which displaces 7’ to a point S on the hypersphere. Transferring the origin to
the centre O of the hypersphere, the equation of the hypersphere is

22+ 22+ u? = RE. (6-1)

For a particle with uniform probability distribution over the hypersphere the mean
values are Ry S B JUEY )
Thus the standard deviation of a coordinate of a particle (from its mean value 0)
is $R,; and the standard deviation of a coordinate of the centroid O’ of the N particles
is Ry/2,/N, which is equal to o by (3-8). We denote the

components of 00’ by x,, ¥,, 29, %, Each has a Gaussian Pr T
distribution with standard deviation o

Let P’ be the orthogonal projection of O'. Since PP’ is S
of order 103 em., we can regard P’ indifferently as a point 0
in the tangent space or in the curved space. Its coordinates o

Zgs Yo» %y have a dispersion o, agreeing with that of the
physical origin. Thus the definition of the physical origin
as the centroid of N particles is extended to particles in
spherical space by simply ignoring the » coordinate. The fourth component u, of
OO0’ represents the scale fluctuation of R,. Since the radius of the hypersphere deter-
mines the linear scale of the whole universe, we naturally associate with the distinction
between the geometrical origin Pand the physical origin P’ a distinction between the
geometrical scale OP and the physical scale O'P’. We have

O'P'|OP = (Ry—uy)/R,.

Since the standard deviation of uy/R, is o/R, = o, the scale fluctuation is correctly
represented.

What we have here shown is that a rather naive interpretation of the four-dimen-
sional picture turns out to be correct. This makes four-dimensional theory rather easier
than we had a right to expect. I do not think that an alternative proof of the results
in § 3 can be obtained in this way. If central or stereographic projection is substituted
for orthogonal projection, the standard deviation of the centroid of the projected points
is not equal to Ry/2,/N. It would be difficult to justify the preference for orthogonal

“projection without reference to the full investigation in § 3.

“According to general relativity theory local irregularities of curvature are superposed
on the cosmical hypersphere. It might seem that the next step in unified theory would
be to derive these local curvatures from statistical fluctuations by some extension of
the theory of § 3. But that would be a misunderstanding of the relation between molar
and microscopic theory, and of the relation of unified theory to both. Normally the
formulae of general relativity theory which covers molar physics and of quantum
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theory which covers microscopic physics are not comparable. Being intended for
different fields of application, they introduce different kinds of approximation; so that
usually when a problem is such that the approximations of general relativity theory
are valid, the approximations of quantum theory are invalid, and vice versa. To unite
the two theories we have to seek out special conditions in which the approximations
of both are satisfied, so that the methods of both are rigorously applicable. A uniform
steady distribution, or Einstein universe, provides such a meeting point.

To show how the approximations of the two theories diverge, let us consider the
most typical feature of quantum theory. Quantisation is a complication which arises
from uniformity and symmetry; for in these conditions there is a persistence of certain
dynamical integrals (usually integrals of angular momentum) which invalidates the
assumption on which the practice of molar averaging is based. A slight non-uniformity
is treated in quantum theory as a perturbation, which does not modify the integrals
though it reduces the time that they persist. Thus as the non-uniformity increases the
importance of quantisation fades away. When it appears that quantal effects are no
longer important, the conditions for the usual molar averaging are satisfied; and, by
a discontinuous change of method, we pass over to the representation of non-uniformity
by irregular curvature.

To show. more definitely the incompatibility of method, consider an atom in the
slightly non-uniform environment which corresponds to an irreducible gravitational
field. The non-uniformity would be freated in quantum theory as a perturbation
having no effect on the eigenstates of the atom but inducing transitions between them.
The eigenstates are determined by a wave equation which, when expressed in tensor
form, contains the tensor g,,. Since the eigenstates are the same with or without the
non-uniformity, so also are the wave equation and the coefficients g, contained in it.
But this directly conflicts with general relativity theory which represents the gravi-
tational field by modifying the g ,,.

To take account of an irreducible gravitational field in the wave equation by using the
9 » which represent the gravitational field in molar theory would be, not a refinement, but
an error.* The principle of equivalence does not apply. Formally this remains true for
structures so extensive that the molar g,, differ considerably from the uniform g,
used in the wave equation; but, since a wide deviation implies that transitions between
the eigenstates are very frequent, the wave analysis ceases to be useful. This is the
fading out of quantisation already mentioned, which leaves us free to change our method
and redescribe the system in terms of the non-uniform g, of molar theory.

The distinction between ‘special’ and ‘general’ relativity theory is well known. In
considering the connection with quantum theory, it would be useful to distinguish
also an ‘intermediate’ relativity theory. Special theory is limited to flat space-time;
intermediate theory is an extension to curved but uniform space-time; general theory is
a further extension to non-uniform curvature. It is intermediate theory that links up
with quantum theory. Since the formulae of general relativity cover intermediate
relativity, they will be used from time to time in our development of quantum theory,
but always in their particular application to uniform curvature.

a Thus attempts to ‘extend Dirac’s wave equation to general relativity’ are misguided, but probably
the intention is only to extend it to generalised coordinates in flat space by putting it into tensor form.
This is a purely mathematical transformation in no way dependent on the theory of relativity.
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7. Uranoids

For the purpose of investigation we divide the universe into two parts, namely, an
object-system and its environment. The term ‘object-system’ (object-particle, object-
field, etc.) is used to distinguish the part that is being intensively studied. The environ-
ment comprises everything not specifically included in the object-system, whether
surrounding it or permeating it. It might alternatively be described as the ‘back-
ground’,

The environment must never be left out of consideration. Tt would be idle to develop
formulae for the behaviour of an atom in conditions which imply that the rest of the
matter of the universe has been annihilated. In relativity theory we do not recognise
the concept of an atom as a thing complete in itself. We can no more contemplate an
atom without a physical universe to put it in than we can contemplate a mountain
without a planet to stand it on.

The most elementary formulae of physics relate to very simple object-systems in
very simple environments. Just as we have to begin with very simple objects—
electrons, two-particle systems, etc.—so we have to begin with very simple environ-
ments-—uniform, electrically neutral, ete. These simple environments will be called
uranoids. A uranoid is an ideally simplified universe just as a geoid is an ideally simpli-
fied earth, and it is used in an analogous way.

The uranoid adopted as standard environment for our object-systems is naturally
taken to be a steady uniform probability distribution of particles. This, as we have
seen, constitutes an Einstein universe, and occupies a hyperspherical space. Usually
it is further specialised as a ‘zero-temperature uranoid’ so that the particles are at
almost exact rest.* The advantage of zero temperature is that the environment then
consists of material particles only; whereas if the temperature is not zero it includes
radiation. The standard uranoid is also taken to be electrically neutral; so that if a
molar electromagnetic field has to be considered, it must be included in the object-
system. .

The whole universe, usually idealised as a standard uranoid, is a partner in every
problem. That does not mean that we attribute to the remote environment any greater
share in determining local phenomena than is ordinarily admitted in relativity theory.
In particular, the most radical change in the distribution of the extra-galactic nebulae
only affects small-scale systems to the extent to which it alters g,, in the locality
considered—an effect almost entirely eliminated by a local transformation of co-
ordinates. We include the whole environment in order to save the trouble of dividing it.
For, if we introduce a boundary, we give ourselves the extra trouble of discovering
boundary conditions which shall have the same effect as a continuation of the environ-
ment beyond the boundary. \

Two lines of approach have led us to consider a system of a very large number of
particles in conjunction with the small system that is being intensively studied. In
§2 it was a question of mefric; the large system determines the uncertainty of the
physical reference frame, and hence the scale of the various structures in that frame.
Now it is a question of mechanics; the environment of the object-system is actually a
vast assemblage of particles, and we have to consider the physical interaction. But these
two effects are really identical. Einstein’s theory, by unifying geometry and mechanies,

8 For the significance of ‘almost exact’ see § 10.
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unifies the metrical and mechanical effects of the environment; both are included in
the description of the influence as a ‘field of g,,’. This is at the same time a metrical
field and a mechanical (gravitational and inertial) field; and it makes no difference
whether we regard it as influencing the measured characteristics of the object-system
by physical interaction or by determining the measure system to which they are
referred.

In relativity theory the field of g, is generally described as the gravitational field.
Sometimes, however, as a concession to Newtonian terminology, we describe it as the
inertial-gravitational field, and make an--artificial separation of the inertial and
gravitational parts. When this distinction is made, the standard uranoid provides the
inertial part of the field, and the deviation of the actual environment from the standard
uranoid provides the gravitational part. Gravitational fields’ will play a prominent
part in our development of relativistic quantum theory. This seems surprising at first,
since the effect of a gravitational field in the narrower sense is negligible in systems
on an atomic scale. But we use the term in the broader sense which includes the inertial
field. It is the inertial part that is important; for without an inertial field there is no
inertia, and the masses of particles are unaccounted for.

8. The extraneous standard

We adopt a system of ‘natural units’ such that
c=1, 8mxh*=1, (81)

where « is the constant of gravitation, and # is Planck’s constant divided by 27. By
taking the velocity of light ¢ to be unity we avoid the obsolete and troublesome dis-
tinetion between mass and energy; these terms will be regarded as synonymous, and
we shall use whichever is the more usual in the particular context. The second condition,
as will presently be seen, simplifies the relation between the energy tensor which is the
basis of relativity mechanics and the momentum vector which is the basis of quantum
mechanies.

The particular relations (8-1) are chosen for convenience; but the imposition of two
(and only two) fixed relations between the units of length, time and mass is an essential
theoretical requirement. It is needed to remove a redundant fluidity of description of
physical systems, occasioned by referrring them to three extraneous standards when
one standard is sufficient to fix the scale. In modern physics fluidity of description is
provided by a systematic transformation theory (tensor calculus, ete.), which is thrown
into confusion if we graft on to it a merely traditional change of units.

The two relations leave one unit at our disposal. It is immaterial whether this is
taken to be a length, mass, density or any other combination. If, for example, it is
taken to be a length, the corresponding units of mass and time are fixed by (8-1); and
every physical quantity has just one dimension-index which shows how it varies with
the unit of length.

One extraneous standard must be retained. The internal structure of a system can be
described wholly by numerical ratios; but to complete the description it is necessary
to fix the scale of the system by reference to some standard outside it. If the whole
universe were being investigated as one system, an outside standard would be un-
necessary. But the analytical method of physics divides the universe into simple
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systems of various types which are studied one by one. Each system is supposed to be
surveyed from outside, so that the observer and his standard scale are alien to the
system. The extraneous standard forms the link that enables us to put together in a de-
finite scale-ratio the fragments into which our analytical method divides the universe.

We have discussed the construction of a standard of length in §4. As a physical
standard, supposed to be used in eXperiméntal measurement, it is subject to uncer-
tainty. The linear scale-uncertainty of our adopted physical reference frame is o;
and since all observables are understood to be referred to that frame, it is implied that
they are measured with an extraneous standard having that uncertainty. That is to
say, the standard constructed from the recorded specification must, when brought
into use, be assigned a length, not 1 cm., but 1 + o, cm. It follows that any physical
quantity of dimensions (length)? has a scale-uncertainty 1 + yo.

We now see why it is essential to eliminate redundant units. For a mass in natural
units ¥ = — 3; so that masses have a scale-uncertainty 1 + 3c,. But if masses in the
object-system were compared with a standard gram defined independently of the
standard of length, we should have no means of knowing how their scale-uncertainty
is related to o,. The classical system of definitions involving three independent stan-
dards, although tolerable for exact quantities, is not sufficiently precise for the treatment
of probability distributions. Unless the definitions indicate the nature of the com-
parisons by which the quantities are to be ascertained, they leave the kind of ambiguity
llustrated in §5 by £, and &/,. The use of natural units greatly helps to eliminate this
ambiguity; for, by abolishing redundant standaxrds, it narrows the choice of procedure
of measurement. }

The usual equations (with ¢ = 1) for the energy tensor T, in relativity theory and
for the momentum vector p, in quantum theory are

- 8«7, = G,~%9,0G, p,=—dfox,. (8-2)

It follows that 87«7, is a spherical curvature or inverse square of a length, and has
therefore the same dimensions as (p,,/#)?. Then with 87«#? = 1,7, has the same dimen-
sions as p3, or more appropriately as p,p,. Thus: '

An energy tensor is, both dimensionally and tensorially, the product of two momentum
vectors. (8-31)

In particular, density has the dimensions (mass)?, so that volume has the dimensions
(mass)™1.

A particle density (number of particles, or probability of a particle, in unit volume)
is a pure number multiplied by a volume-reciprocal, and therefore has the dimensions
of amass. A volume-reciprocal (three-dimensional) is a vector in four dimensions. Thus,
both dimensionally and tensorially,

A particle density is a momentum vector. (8-32)

In relativity mechanics it is most convenient to use a density as the extraneous
standard, so that the dimension-index of the energy tensor is 1. The dimension-indices
of the principal physical quantities referred to a density standard are:

Mass, momentum, energy, 3. Length and time, —%. Density and pressure, 1.

Angular momentum and action, 3. Electric charge, 1. (8-4)
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The results (8:31) and (8-32) enter deeply into the form of the theory that we shall
develop; so that in the main series of investigations we commit ourselves to natural
units and to the system of dimension-indicesin (8-4). Also, since 87k = %2, the constant
of gravitation enters into the quantum formulae through #. Itis open to an investigator
to choose two other relations in place of (8:1) in order to eliminate the redundant
standards; I think he will find the resulting theory less simple, but it will come to the
same thing in the end. The point I want to emphasise is that he will have to do a great
deal of recasting of the theory to suit his units; for when once we have begun to develop
the theory on the basis of (8-31), there is no going back on natural units. ‘

9. Scale-free physics

The standard uranoid has two linear characteristics o and R, which for the present
we regard as independent.* In a considerable part of physics we are not concerned with
the actual values of o and R,; this will be called scale-free physics. Scale-free physics
deals with structures which can be adjusted to any scale. This is an ideal which can
only be approximately realised in the actual universe; for clearly the homology must
break down if the structure is magnified to a size comparable with the universe or
minified to a size comparable with an atom. The exact equations of the system must
involve both o and R,; but there are many investigations in which we can to a suffi-
ciently high approximation put o = 0 and R, = oo. Thus physics splits into three
branches:

(1) Scale-free physics, involving neither o nor R,;
(2) Cosmical physics, involving R, but not o; AN
(3) Quantal physics, involving o but not R, N

There are besides certain unifying investigations which involve both o and R, such
as that in § 3; but these are too rare to need formal classification. A more informal
nomenclature, which leaves cosmical physics out of account, distinguishes (1) and (3)
as scale-free and scale-fized physics.

Molar relativity theory is contained in (1) and (2), and classical molar theory in (1).
But (1) includes also a considerable part of quantum theory. It should be remembered
that Dalton’s atomic theory had along period of fertile application before any knowledge
of the actual size of atoms was obtained. In the same way we shall carry out investiga-
tions which treat matter as an assemblage of large numbers of particles and involve
the mass-ratios of different kinds of particles, but do not introduce any factors which
fix the size or mass of an individual particle. This is all part of scale-free physics. The
term ‘quantal theory’ is intended to be more restricted than ‘quantum theory’; it
refers to the more typical part in which quantisation and discrete eigenstates are
introduced. Text-books on quantum theory do not confine themselves to this, and they
introduce many developments which belong to scale-free theory. It is in the scale-free
part of quantum theory that relativistic treatment introduces the most. drastic
amendments, and the most fertile advances. We shall therefore devote a great deal of
attention to the scale-free part of quantum theory.

& They are not actually independent, because the only possible value of N is § x 136 x 22%¢: cf. Proc,
Camb. Phil. Soc. 40, 37, 1943.
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The criterion of a scale-free system is formally stated as follows: If we specify the
characteristics of a system in terms of an extraneous standard, and consider the series
. of systems formed by varying the standard but keeping the specification the same,
then (for a scale-free system), if one system of the series is physically possible, all are
possible.

10. Pseudo-discrete states

Since quantum theory is partly scale-fixed and partly scale-free, two very different
types of wave function are employed in it. Those in the scale-fixed or quantal part are
discrete and self-normalising; those in the scale-free part are pseudo-discrete and are
arbitrarily normalised. N

The discrete self-normalised wave functions represent a particle density which:
rapidly decreases outwards so that the integral over space converges. They are adjusted
to give a ‘normalised density’ s,,(x, ¥, 2) whose integral over the whole domain of z, y, 2
is 1. This density is said to correspond to ‘unit occupation’. But we can associate with
the state defined by the wave function an occupation factor j, and the corresponding
density is then js, (z,y,z). The occupation factor gives the number of particles in the
state or the probability that there is a particle in the state. In more advanced develop-
ments the occupation factor is a symbolic operator J, which only reduces to a number
(an eigenvalue) when there is definitely an integral number of particles in the state.

The pseudo-discrete or scale-free wave functions are typified by the ‘infinite plane
waves’ of elementary wave mechanics. The infinitude is not to be taken literally, but
implies that the distribution extends uniformly to an undefined distance large compared
with o but small compared with Ey—anything from a millimetre to a megaparsec. It
would be meaningless to specify the total number of particles in a distribution of
undefined extent. We therefore choose an arbitrary normalisation density s, to be
defined as the ‘density of unit occupation’; or equivalently we choose an arbitrary
normalisation volume V,, and define unit occupation to be one particle per volume V.
This does not mean that each particle is distributed over a cell of volume ¥}, ; that would
be represented in wave mechanics by a wave packet, not by a simple plane wave.
Every one of the particles has uniform probability distribution over the whole extent
of the wave. A particle ocoupying o pseudo-discrete wave function is an unidentified
member of a large assemblage.

The classification of wave functions as discrete and pseudo-discrete requires explana-
tion because the usual antithesis is between ‘discrete’ and ‘continuous’. A set of
distribution functions f,(x,y, ), distinguished by discrete values of a parameter «, is
naturally replaced by a continuous distribution function f(z,y, 2, @) when o becomes
continuous. But we cannot do this with wave functions. They contain a phase which
gives rise to the characteristic wave property of interference when two or more waves
exist at the same point. Clearly a representation in which waves at the same ‘point’
z, Y, 2, o interfere is not the limiting form (for continuous «) of the representation in
which waves with different values of a at the same point %, ¥, z interfere. Since a
cannot be treated as an additional argument of the wave function, we divide the domain
of a into arbitrary small ranges Jc,, associating a wave function ¢, with each range.
These are the pseudo-discrete wave functions.

EFT

IS
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When the whole occupation is concentrated in a range represented by one pseudo-
discrete wave function, the state of the system is said to be almost exact. For example
we often have to consider a system in a state of almost exact rest.

The proper mass of a particle is a fixed characteristic, but the proper density can be
varied at will by varying the volume over which its probability distribution extends.
Thus the density is a scale-free characteristic, and the mass a scale-fixed characteristic.
More generally the energy tensor of a particle is scale-free, and the momentum vector
is scale-fixed. We have, therefore, the distinction that the particles of scale-free physics
are carriers of energy tensors, and the particles of quantal physics are carriers of
momentum vectors.

Since relativity mechanics is based on the energy tensor, scale-free particles appear
as the first step in passing from molar relativity theory to microscopic theory. By
means of pseudo-discrete wave functions we can represent a molar object as a large
assemblage of scale-free particles in one or more pseudo-discrete states. The molar
energy tensor is thus represented as the sum of contributions 47, from individual
particles, AT, being a characteristic of the pseudo-discrete state.

The individual particles are unidentified members of the whole assemblage; so that,
as regards any one particle, we can know only the probability of its being in the various
states. In other words the occupation factors 7, of the pseudo-discrete states can be
interpreted as probabilities of an individual particle as well as frequencies in the
assemblage.?

It might be thought that the scope of scale-free theory would be very limited, seeing
that the masses of particles are not scale-free. But results usually expressed in terms
of mass can often be expressed alternatively in terms of density. Thus the mass-ratio
m,/m, of a proton and electron can equally well be described as the density-ratio of
two constituents (positive and negative) of a molar distribution of hydrogen. As a
density-ratio it comes within scale-free theory, and we shall evaluate it by scale free
theory in Chapter 11.

It might also be thought that the ‘infinite plane waves’ representing uniform prob-
ability distributions, though useful for a start, would very soon have to be replaced
by more complicated waves in order to represent systems of more practical interest.
But the more interesting systems are not obtained that way. Atoms, ete., are con-
structed, not by introducing non-uniformity of distribution of electrons and nuclei,
but by correlating their coordinates. Consider, for example, a vessel known to contain
a proton and an electron, each of them equally likely to be anywhere in the vessel. In
due time they will combine into a hydrogen atom, emitting a photon. The electron is
still equally likely to be anywhere in the vessel; and so also is the proton. What has
happened is that their probability distributions, while remaining uniform, have
become correlated. Atomic wave functions, such as ‘the wave function of the hydrogen
atom’ are correlation wave functions. These must not be confused with distribution wave
Junctions. It is only in a few special problems (deflection of particles in a molar electro-

2 The definition of probability in physics is always a frequency definition, so that the probability
attached to an individual is in any case defined as the frequency in an ensemble. But the ensemble is
commonly an imagined class of individuals or events, e.g. the imagined repetitions of a measurement. -
Here, however, the ensemble is an assemblage supposed to be actually present in the physical universe.

The fact that it is not infinite like the ideal ensemble would be represented by an extraordinary fluctuation;
but this is treated as negligible in the scale-free approximation.
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magnetic field) that there can be any occasion to consider other than uniform distribu-
tion wave functions. o

In later work distribution and correlation wave functions will be distinguished ag
external and internal wave functions. The external wave functions are pseudo-
discrete, scale-free and (to avoid useless complication) uniform; the external particles
or ‘extracules’ represented by them are unidentified members of a large assemblage.
Initially the same treatment is applied to the internal particles or “intracules’, so that
they also are represented by pseudo-discrete wave functions; but this is preliminary
to a more highly developed treatment by quantal theory.

It will be seen that the bifurcation of quantum theory indicated by the two types
of wave function has several aspects. We have still to mention the aspect which is
perhaps physically the most significant. Quantisation is a distinctively electrical
phenomenon. This becomes evident when we realise that the quantum constant % is
simply the electrical unit e?/c disguised by including a ‘multiplicity factor’ 137 (§ 33).
It is quantisation that introduces the fixed scale and the discrete type of wave func-
tion; so that they appear only in the distinctively electrical part of fundamental theory.
We say ‘distinctively electrical’; because in unified theory electrical and mechanical
energy merge into one another like inertial and gravitational energy, and the adopted
line of separation is flexible to some extent. Up to a certain point electrical character-
istics can be represented by an energy tensor, which can be absorbed into the
mechanical energy tensor. Distinctively electrical theory may be said to begin when
this treatment proves inadequate and the scale-free characteristic (energy tensor)
is replaced by a scale-fixed characteristic (momentum vector) related to the unit e?/c
or #. We may therefore broadly describe scale-free theory as mechanical theory and
scale-fixed theory as electrical theory—with the rider that the less distinctive parts
of electrical theory can be, and commonly are, transferred to scale-free theory.

11. Stabilisation

In theoretical investigations we do not put ourselves quite in the position of an
observer confronted with an object of which he has no previous knowledge. The
theorist is considering, let us say, an electron with coordinates #, y, z. He recognises
that knowledge of #, y, z could only be obtained by observational measurements
performed on the electron, and that these measurements will create a conjugate
uncertainty in the corresponding momenta. But knowledge of the mass m and charge e
is on a different footing. Their values are taken from a list of physical constants. It is
true that these values of m and e rest on observation, but not on observation of the
object at z, ¥, 2. As applied to that object they are free information—not to be paid for
by a reciprocal uncertainty of the variates conjugate to them.

The theorist would explain that this free information follows from his knowledge
that the object at z, y, zis an electron. But how has he got to know thatitisan electron?
The only answer seems to be: ‘I know it is an electron because (as stated in the title
of my paper) that is what the investigation is about.” The conventions of theoretical
physics accept this as an admissible source of knowledge. We shall not dispute this.
But it must be recognised that in this way a disjunction with purely observational
physies is created.

2-2
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An observer confronted with an unknown particle does not start with knowledge
that it is an electron. If he measures the mass and charge he may be able to infer that
it is almost certainly an electron; but meanwhile he has by his measurements created
reciprocal uncertainty in the conjugate variates. A pure observer cannot obtain free
information. On the other hand, an actual observer is a human being, and therefore
an inveterate theorist; and he will probably proceed to steal free information by sub-
stituting the accurate tabular values of m and e for his own rougher measurements
without paying the enhanced price.

- We shall call a quantity whose value is given as free information a stabilised
characteristic.

According to the technical definition of ‘observable’ a stabilised characteristic is not
an observable. An observable is a quantity whose value or whose probability dis-
tribution is supposed to have been ascertained wholly by observations of the system
that it describes; stabilisation replaces this by a quantity whose value is prescribed
as one of the postulated conditions of a theoretical problem.

We have found (§5) that it is often necessary to refine the classical definitions in-
tended for exact characteristics before they can be used in connection with probability
distributions. Consider the momentum 4-vector p,, pa, p3, p, and the proper mass m
of a particle. It is generally understood that p,, p,, ps are directly measured; but it is
not clear whether p, stands for a quantity supposed to be obtained by a direct measure-
ment of an analogous kind, or whether it is to be computed from other measurements
by the formula pi = p?+p%+pi+m? Usually the latter procedure seems to be in-
tended; we can indicate this definitely by calling p, the hamiltonian. The further
question then arises: Is m intended to be an observable like p,, Py, 3, Or is it a stabilised
characteristic of the particle? Both cases are important in physics, and they must be
carefully distinguished.

By stabilising m, the probability distribution of the mechanical characteristics of
the particle is reduced from a four-dimensional distribution over p,, p,, P, m (or
equivalently over py, ps, s, P,4) to a three-dimensional distribution. We shall find that
the number of dimensions of the domain of probability distribution (hereafter called
the phase space) enters as a coefficient into the leadiné formulae of fundamental
theory, and that particles are classified primarily according te this number. A particle
whose probability distribution has £ dimensions will be called a Vj,. Thus a simple
(spinless) particle is a ¥; or a V according as its proper mass is or is not stabilised. The
number % is the number of degrees of freedom of a system; and stabilisation corre-
sponds to the introduction of constraints which reduce the number of.degrees of
freedom.

Stabilisation is used lavishly in specifying the environment of the object-system.
For there would be no gain in separating for mathematical treatment a simple object-
system with only a few degrees of freedom, if we did not at the same time limit the
complexity of the environment considered. in conjunction with it. Hence we take the
environment to be uniform, static, of zero-temperature and electrically neutral. Somuch
restriction is imposed that only two observables R, and o remain; and of these only o
is concerned in the ordinary problems of microscopic theory. When we treat the theory
of a hydrogen atom in the standard uranoid, the information that the environment is
uniform, static, ete., is on the same footing as the information that the object-system
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is a hydrogen atom. Both are free information. We might alternatively treat an atom
in a universe found observationally to agree with the standard uranoid within specified
limits of uncertainty; but then it would be only logical to take an atom found obser-
vationally to be hydrogen within specified limits of uncertainty which do not exclude
a chance of its being helium, lithium, ete.

Individual components of a vector or tensor cannot be stabilised without abandoning
the tensor transformation properties. Stabilisation can, however, be applied to a tensor
in the form of invariant conditions to be satisfied by the tensor as a whole. We can, for
example, impose on a tensor of the second rank the stabilising condition that it is
antisymmetrical, or that it is the outer product of two vectors, or that it is the outer
square of a vector. These conditions are invariant for tensor transformations; and,
since they reduce the number of independent variates required to specify the tensor,
they reduce the number of dimensions of its probability distribution.



Chapter IT
MULTIPLICITY FACTORS

12. Complementary fields

The object-systems studied in microscopic physics are composed primarily of
particles. By gravitational and electromagnetic interaction the object-particles disturb
the distribution of surrounding particles, so that the environment cannot have the
simple specification postulated for the standard uranoid. We treat the disturbed
environment as the sum of a uniform environment and a ‘disturbance’.

This gives a threefold division of the universe into object-particles, standard uranoid
and a disturbance. In theoretical physics the disturbance is tossed about like a
shuttlecock between the other two. In general relativity theory it is grouped with the
uranoid, and we then have a particle in a rather complex environment. The environ-
ment thus becomes the main theme of study, and the theory is described as field theory.
The method of wave mechanics requires us to include the disturbance in the object-
system. It is then called the object-field.

We have said that the environment comprises everything not specifically included
in the object-system; but in practice the environment is specified first, as a standard
uranoid, and everything else must be included in the object-system. In particular, all
fields except the inertial field (which corresponds to the undisturbed uranocid) are to
be included as object-fields. We distinguish between extraneous and complementary
object-fields. An extraneous gravitational or electrical field is deliberately introduced
in order to study the behaviour of the object-particles in conditions more complex
than those provided by the standard environment; we are not concerned with such
fields at the present stage. The complementary object-field is an inescapable adjunct
of the object-particles, being the form in which the theory takes into account the
readjustment of the environment due to their presence. If the object-system hasg
electric charge the complementary electric field represents the induced charge—or
rather it is the substitute that we put into the equations to compensate for neglecting
induction effects in the environment. Similarly the complementary gravitational field
is the compensation for neglecting the gravitational sources induced in the environment
by the mass of the object-system.

The complementary field is a quantitative conception. The definition of the ‘dis-
turbance’ as the residuum left by subtracting the undisturbed from the disturbed
environment is‘%uade precise, if it is understood that the subtraction refers to quanti-
tative characteristics. Thus the-difference of the energy tensors of the disturbed and
undisturbed environment is transferred to the object-system as the complementary
field energy tensor. It follows that an object-field is specified by the same set of variates
—energy, momentum, etc.—as a distribution of particles. (The other mode of descrip-
tion of a field, by potentials, etc., is used only when the disturbance is grouped with
the uranoid, as in molar relativity theory.) The field quantities can usually be allotted
between the particles, so that each object-particle has a particle energy tensor and a
complementary field energy tensor. A close analogy to complementary field energy is

-
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the effective addition to the energy of a cylinder moving through a fluid due to the
motion that it sets up in the fluid.

The term ‘field’ is very much overworked, and it would be difficult to give a definition
which does not eonflict with some common usage. The sense, which it seems most
important to preserve in fundamental theory, associates it with averaged character-
istics, in contrast to particle characteristics which are essentially individual even if the
individual is an unidentified member of an assemblage. This meaning still applies
when we speak of ‘the field energy of a particle’, because the energy is that of the
disturbance created in an environment composed of a very large number of particles
whose average distribution is known.?

We have to consider the complementary gravitational field and the complementary
electromagnetic field. Both are important, but current quantum theory ignorés them ’
altogether. Being primarily an empirical theory, it makes up for the omission b;/
empirical factors and terms in its formulae.

Investigation of the complementary electromagnetic field is postponed; but it will
be useful to state briefly its effect. Consider a proton as object-system. By electric
interaction it polarises surrounding matter. In the theory of electrolytes and in astro-
physics the importance of the complementary field energy (Debye-Hiickel energy) is
well known; but in constructing the hamiltonian of a proton in current W&Vj mechanics,
it is ignored. The proton is treated as though it could be superposed on its environment
without creating an induced charge. We must conclude that the current equations of
wawve mechanics postulate an unpolarisable uranoid. This makes the field of the proton
continue outwards indefinitely instead of being quenched in a short distance by an
induced charge, and leads to difficulties of divergence of integrals. In replacing a
natural environment by an unpolarisable uranoid, idealisation has been carried too
far and essential properties of matter have been discarded. By taking account of the
complementary field energy corresponding to the induced charge, we obtain an addi-
tional term in the hamiltonian which turns out to be the non-Coulombian energy.
We further reformulate the basis of the theory of radiation, and avoid the divergence
of the integrals which oceurs in the current formulation.

In this chapter we shall deal with the complementary gravitational field. We have
a tangled skein to unravel; because in this case the empirical adjustment made in
current theory is, not an isolable term, but a set of factors which have been absorbed
into the accepted masses of the elementary particles and other fundamental constants,
and carried through into every part of microscopic physies.

13. The rigid-field convention

The divergence between the methods of relativity theory and of quantum theory is
especially manifested in their treatment of the field. The root of the divergence is that
wave mechanics (which is the principal analytical method of quantum theory) is

2 Owing to the technical difficulty of solving problems relating to a system of more than two or three
particles, field treatment is often used as a manageable approximation when the number of particles to
be averaged is quite small. In this way we may introduce an intra-atomic field (Hartree’s ‘self-consistent
field’). But in the general theoretical development we set aside intra-atomic fields as merely a practical
dodge. Energy of interaction of object-particles on one another is part of the particle energy; it is the
interaction of the object-particles with the environment that contributes the field energy.
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based on the concept of a rigid field. The metrical (or gravitational) field is uncon-
ditionally assumed to be rigid; particles in quantum theory are supposed to be freely
displaceable or removable without altering the g, of the coordinate frame. If an
extraneous electromagnetic field is present, it also is assumed to be rigid, provided that
in accordance with the usual practice we exclude the ‘trangverse’ part which is treated
separately as a radiation field. In higher approximations the radiation field is not
rigid; but this can scarcely be counted as an exception, because it is then treated by
particle methods. The fact that wave mechanics, when forced to deal with a non-rigid
field, replaces it by photons or oscillators, shows how deeply rigidity enters into its
conception of a field.

A rigid field of g,, and &, (electromagnetic potential) having been specified, wave
mechanics proceeds to construct in it a skeleton frame of eigenstates, leaving itself free
to decide later to what extent the eigenstates are occupied. This flexibility of occupation
is essential to the method; for physical change is to be represented by transitions
between eigenstates. There is no such flexibility in relativity theory where the g, and
k, are conditioned by the matter present, and any change of the occupying matter
involves a readjustment of the field; the change indeed has no physical significance
except through its manifestation by changes of the field. This makes relativity calcula-
tions so difficult that even the problem of two bodies has not yet been solved beyond
a rather crude approximation. It is no reproach to quantum theory that it parts
company with relativity theory in order to find a more practicable way of solving the
problems in which it specialises. The rigid-field convention is the basis of its method.
Instead of a fluid frame of field variables reflecting every change of the material system
investigated, we contemplate a rigid frame of eigenstates unaffected by changes
(transitions) of the occupying system. .

The method can only be an approximation, and if not used circumspectly it may not
even be a valid first approximation. In order that it may be a first approximation,
small changes in the degree of occupation of the eigenstates must produce only changes
of the second order in the field. Thus:

The field must be stationary for small changes of the occupation factors of the
etgenstates. (13-1)

By attending to this condition we secure an infinitesimal flexibility of occupation.
Infinitesimal flexibility is not enough for some intended applications, and we shall see
later how the flexibility can be extended. But we have to turn to the beginning of a
theory—to its first approximations—rather than to its more elaborate adaptations
to discover its fundamental concepts and definitions. It is clear that (13-1) must be
incorporated in the definition of the ‘particles’ contemplated in wave mechanics; so
that they may possess by definition the freedom of transition that the theory postulates.
Quantum particles, i.e. the entities supposed to ocecupy, or to have a probability of
occupying, states in a rigid field, must be distinguished from relativity particles which
are defined as singularities in an essentially non-rigid field. We must avoid the wide-
spread error of applying to quantum particles familiar formulae that have been
developed for relativity particles. The fact that relativity particles have Lorentz-
invariant properties gives no prima facie reason for supposing that quantum particles
have Lorentz-invariant properties.
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Since (13-1) is embodied in the definition of quantum particles (as occupants of
states in a rigid field) failure of the stationary condition becomes an inconsistency.
As we should usually express it, the failure implies that the field produced by the
particles occupying the eigenstates is not the same as the field assumed in calculating
the eigenstates. Thus the complementary field is alternatively called the self-consistent
field. We have hitherto taken the rather one-sided view that the complementary field
is produced by the masses of the object-particles; but the particles have these masses
because they occupy states of corresponding energy in the field. In practical calculation
the bringing of the field initially assumed into agreement with the field finally calculated
usually involves a series of adjustments by trial and error; but happily the self-
consistent gravitational field of a scale-free system is found by a very simple calculation.

14. Separation of field and particle energy

We first assume the eigenstates to be discrete. We have then a set of states ¥,
(r=1,2,3,...) to each of which is assigned an occupation factor j,. Since changes of
the system are specified by changes of the j,, the j,. can be regarded as generalised
coordinates, or preferably generalised momenta. The total energy of the system
including that of the self-consistent field will be a function H® (4, 7s, 43, ...) of the j,.
Since the self-consistent field has to be recomputed and the eigenstates redetermined
after any change of occupation, H® will not in general be a linear function. Let

E, = 0H*[0j,, (14-1)
so that dH® = X'E.dj,. (14-2)
And let E° =24 B, = 2j,0H°[?,. (14-3)

The energy of a particle in the state i, must be E.. For, in order that the field may be
rigid, the whole change of energy dH% must be accounted for as a change of particle
energy alone. This is expressed by (14-2), E,dj, being the change due to the addition of
the fraction dj, of a particle of energy F,. Then E° is the total particle energy of the
system; and the field energy is the difference

Wo=H0— E° = H°— Xj,0H°[0j,. (14+4)

By (14-2) and (14-3) AW° = — Zj.dE,. (14-5)
We note that if HO (j;, j,, 73, -..) is a homogeneous function of the nth degree,

EY=qnH® W°=(1-n)H" (14-6)

For definiteness we have considered energy; but any other characteristic which is
conceived as additive can be substituted. Energy-density, momentum, pressure,
angular momentum, etec., must be apportioned between the object-particles in their
various eigenstates and the object-field by the same formulae. This apportionment is
such as to allow small changes of occupation with the Z, and W° constant; though for
larger changes E. and W0 are functions of the occupation.

For molar fields (including therefore the gravitational field) the limitation to small
changes dj, is not so severe a restriction as we might at first suppose. Consider the
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transfer of a small element of occupation dj from a state ¥, to ¥,. By (14-2) the change

of energy Is JH® = dj(H,— T,). (147)

In order to measure this observationally we must take a large number of systems, say
N = 10%, of which a smaller but still considerable number # make the transition from
¥, to .. The particular systems that change are not identified; so that, as regards any
one unselected system, the change is an increase dj = #/N of the probability that it is
in state 1, with an equal decrease of the probability that it is in state ¢,. Accordingly
the limitation is that N/n must be large.

We can therefore admit large changes including complete transitions of individual
systems, on the understanding that

(1) The system is an unidentified member of a large assemblage.

(2) The great majority of the systems in the assemblage remain in the initial state,
i.e. the state for which the self-consistent field was calculated.

15. Application to scale-free systems

When the foregoing treatment is applied to scale-free systems a modification is
needed because the eigenstates are no longer discrete. A discrete eigenstate is specified
by a set of quantum numbers, and there is no ambiguity in identifying the ‘same’
eigenstate 1, after the occupation has been changed and the eigenstates have been
recalculated. Quantum numbers being no longer available we have to use some other
set of characteristics for classifying the states of a scale-free system.

Let the characteristics used for classification be X, (o« = 1,2, ..., n). We shall employ
characteristics which all have the same physical dimensions, and adopt an extraneous
standard of the same dimensions; so that X, has the dimension-index 1. The system
being scale-free, we obtain another physically possible system by the transformation
X,—>AX,, the corresponding transformation of a characteristic ¥ of dimension-index
I being ¥ > XY . The transformation must be applied to the whole system, including
the self-consistent field.

The X, are pictured as coordinates of a point in a ‘representation space’ of # dimen-
sions. Anarbitrary pointin representation space will not necessarily represent a possible
state; indeed the nature of the system contemplated will usually be defined by a set of
relations between its characteristios X . Thus the possible states will form a &-dimen-
sional locus in the representation space, where usually k£ <xn. We call this locus the
phase space of the system. The number of dimensions % of the phase space will be called
the multiplicity factor. .

We denote the volume of an element of phase space by dr. This implies that a metric,
giving a definite reckoning of volume, has been defined. In the phase spaces that we
have occasion to employ, it is possible to develop a systematic metric based on the
conception of relativistic equivalence. But for the present purpose any continuous
metric will serve provided that it is scale-true; that is to say, provided it is such that
the scale transformation X, AX, transforms a k-dimensional element of volume dr
into an element of volume A%dr.

The discrete occupation factors j, are now replaced by a continuous occupation
function j(X) of the coordinates X, such that j(X)dr is the collective occupation of
the states compressed in the range d7. The consequent changes in the formulae of § 14
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are eagily found, summations being replaced by integrations, and ordinary differentia-
tion with respect to a variate j, by Hamiltonian differentiation® with respect to a
function j(X). Corresponding to (14-1), (14-2), (14-3), (14-5) we have

E = hHhj, (15:1)
0H® = [Edjdr, (15-2)

E° = [Ejdr, (15:3)
SWO = SH'— 8 = — [j8( B dr). (15-4)

Let I be the dimension-index of HY, the dimension-index of X, being 1 as already
stated. The equations show that H®, K, K° W?° have the same dimensions. Thus Zdr
has the dimension-index [+ k.

Since the system is scale-free, we can take for the variation ¢ an infinitesimal scale
variation X,—(1+6) X,. Then Wo— W1 +¢), and Edr— Edr(l+e¢)t*; so that, ¢
being infinitesimal, _

SWO = 1eW?, O(Edr) = (I+k)eldr.
Hence, by (15-4) and (15-3),
Wo — — (H_k

: )EO, - —Fpe (15-51)

l

By arbitrarily dividing phase space into small numbered cells dr,, we replace the
continuum of states by pseudo-discrete states (§ 10) with occupation factorsj, = j(X)dr,.
Comparing (14-6) and (15-51), we see that

The scale-free condition makes H® a homogeneous function of degree — [k of the pseudo-
discrete occupation factors. (15-52)

Usually the characteristic H?, whose partition is being considered, is itself one of
the classifying characteristics X . Then I = 1; and (15-51) becomes

HO = —kES, WO=—(k+1)E°. (15-6)

We have seen that the energy tensor is a scale-free characteristic. The simplest kind
of scale-free particle will be characterised by an energy tensor and nothing else. The
components of the energy tensor are then the classifying characteristics of the state.
For such particles (15-6) gives the partition of the total energy tensor 7}, into a particle

energy tensor ¥, and a field energy tensor W,,, namely,

T,=—kE,, W,=—(Fk+ VE,, (15-7)

where the multiplicity factor & is the number of independent components of the energy
tensor. We have to notice that k may be reduced by applying stabilising conditions to
the energy tensor, and the partition of 7), between the particles and field is then altered.

To apply rigid-field treatment we choose an ‘initial state’, and partition the initial
energy tensor (7)), into (£,,), and (W,,), by (15:7). For a small change of occupation

07, = 8K, since the field energy is stationary. Thus
(T,uv)() = k(E/W)O (lnltla’il ‘?nergY), } (15‘8)
o7, = ok, (transition energy).
& Mathematical Theory of Relativity, § 60. If E satisfies (15-2) for small varidtions 6, it is by definition
the Hamiltonian derivative hH°hyj of H°.
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It is rather more convenient to use as the classifying characteristics

X, =T,k (15-91)
Then for a state X, = (X,)o+0X,, we have
E/w = (XﬂV)O—kb\X/a)' (1592)

Since it is used as the classifying characteristic, we call X ,, the generic energy tensor.
Like 7}, to which it is constantly related, X, has the ordinary Lorentz-invariant
properties; that is to say a change of velocity of the system produces in X, the same
alteration as would be produced by an opposite change of velocity of the coordinate
axes. The generic energy tensor therefore gives the expected particle energy—which
the system would be expected to have by ordinary kinematical calculation disregarding
the rigid field. The effect of rigidifying the field is that the transition energy 0%, is —&
times the amount expected.

Another way of putting it is that X, is the energy tensor of a relativity particle and
E,, the energy of a quantum particle. The method of relativity theory requires us to
recalculate the field after any change of occupation; so that for a relativity particle
the self-consistent field would be recalculated after a transition, and we should always
have X, = —7,,/k in accordance with the formula (15-7) obtained for the state for
which the self-consistent field is calculated. The purpose of the quantum method is to
provide an approximation (applicable to small transitions) which avoids this continual
recalculation; and the energies #,, of the particles which it introduces are determined
accordingly. By (15-92) a relativity particle is formally a quantum particle of multi-
plicity — 1.

16. The ‘top particle’

Multiplicity factors will occur very often in these investigations, and we have to .
learn to handle them familiarly and confidently. I think they are made most easily
comprehensible by the principle of the top particle.

When H° is a classifying characteristic, or has the same dimensions as a classifying
characteristic, I = 1; and, by (15-52), H° is a homogeneous function of the occupation
factors of degree —1/k. Thus, if we are considering an assemblage of particles in one
pseudo-discrete state, H® varies as j~%%. In this case j is the whole occupation which
(for pseudo-discrete wave functions) is proportional to the particle density s (§10);
80 that

dH° 1H®

Hoo g, U __JH (16:1)
The assemblage has indefinite extent; but we consider a unit volume, choosing the unit
large enough for s to be very large. If one particle (per unit volume) is removed from
the assemblage, the amount of H°® removed is dHds; we therefore call dH®/ds
‘the H of the top particle’. But the average H°® per particle (in unit volume) is
H?Y/s, which we call ‘the H of a mean particle’. Denoting the H of a top particle
by , and of a mean particle by H, (16-1) gives

9 =—Hk. (16:2)
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The chief application is to the energy tensor, where $ and H are respectively E,
and 7}, (16-2) being a form of (15-7). Thus for an assemblage of particles in an initial
pseudo-discrete state:

The particle and total energy tensors are respectively the energy tensors of a top particle
and a mean particle. (16-3)

If the initial state is the state of almost exact rest, the energy tensor reduces to a
single component, the density; and (16-2) gives the relation between the proper
densities of top and mean particles. Since the proper masses are in the same ratio as
the proper densities, the relation between the mass m of a top particle and the mass
m of a mean particle is m = — k. (16-4)

The negative sign in (16-2) is a basal feature of rigid-field theory, which we call the
wnversion of energy. This will be dealt with later (§21). Here we consider separately the
effect of the multiplicity factor k; so that for the present purpose the minus sign is to
be omitted. We have arrived at a picture of the particles of the assemblage arranged in
energy levels, which are built up successively as j increases from 0 to its actual value,
the energy decreasing as the level rises. The molar characteristics of assemblage depend
onthemean particle ; but since we are limited to small changes of § it is always the top particles
that take part in quantum transitions. Thus k appears as a kind of selection factor. The
particles of the agsemblage are unidentified; and any particle that we select is equally
likely to belong to any level. But the rigid-field convention is that our selected particle
(object-particle) is always a top particle, and the factor % represents the adaptation
of the formulae to this selection.

Since this picture is familiar in quantum theory in other connections, it helps us to
place the present series of investigations in relation to more familiar parts of quantum
theory. The fact that, when a number of similar particles are present, they cannot all
have the same energy but must occupy a series of levels, is usually attributed to the
exclusion principle. It will be seen that although we do not explicitly use excluding
particles in scale-free theory, the exclusion effect is incorporated in another way.
Again, by taking the object-system to be supported, as it were, on a platform of fully
packed energy levels, we obtain the rigidity of background which the quantum-theory
method of treatment demands.

In this method the gravitational field energy W,, no longer appears explicitly; in
fact gravitation has been replaced by exclusion. In this way the treatment of gravitation
is assimilated to the general methods developed for other purposes in quantum theory.
We shall follow up this treatment of gravitation later. For the present it is more useful
to retain W,,; owing to the inversion of energy, it is the sum of the energies of a mean and
top particle (both reckoned as positive).

The multiplicity % decides the partition of 7. If k is changed by partly stabilising
the energy tensor, the mean particle is unaffected; but the energy tensor and mass of
a top particle are changed in inverse ratio to k. We have called a quantum particle of
multiplicity ka ¥, (§ 11). Since quantum particles are top particles, the relation between
the masses my, my of a V, and ¥}, is

my _ky

e (16:5)
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The pseudo-discrete assemblage is the form in which the uranoid appears in scale-
free physics. An assemblage in a state of almost exact rest corresponds to the zero-
temperature uranoid. It is flat and of vague extent, because scale-free treatment
depends on the approximations By = oo, o = 0. One or more unidentified particles in
it are selected to form a small object-system, and these automatically become the top
particles. The rest of the assemblage forms the environment of this object-system, and
is postulated to remain in the initial state of almost exact rest whilst the object particles
have freedom of transition to other states. The particles of the environment or uranoid
only need to be treated collectively, so that they can be taken to be mean particles.

Since % is the number of dimensions of the element dr defining the pseudo-discrete
state, any change of £ must normally apply to the whole assemblage. But it makes no
difference to the mean particles forming the uranoid, and it affects only the object-
particles occupying the top level. As already noted, & may be described as selection
factor. Accordingly, (16-5) applies to ¥, and V,, particles which have the same environ-
ment; and m,/m, is the genuine mass-ratio as it would be determined by practical
measurement,

17. Standard carriers

The ordinary momentum vector and energy tensor have respectively 4 and 10
independent components. But when spin momentum is taken into account, mechanical
characteristics are specified by a complete momentum vector with 10 independent com-
ponents or by a complete energy tensor with 136 independent components.

These will be investigated fully in Chapters v and vir; meanwhile, the following
preliiminary explanation may be useful. Linear momentum is represented by a 4-vector
and angular momentum by a 6-vector in four dimensions. In our later developments
. these will appear in combination as a (4 + 6)-vector, together with 6 additional com-
ponents making 16 in all. The additional components are distinguished by the property
that they change sign when a left-handed frame is substituted for a right-handed frame.
This property is the criterion by which we distinguish electrical from mechanical
characteristics. In the neutral unpolarisable uranoid, which is our standard environ-
ment, the electrical characteristics of a particle are dormant, having nothing to act on;
and the particle is then fully specified by the complete momentum vector consisting
of the 10 mechanical components. The whole set of 16 components constitutes the
‘extended momentum vector’.

Corresponding to the extended vector with 16 components, the extended tensor of
the second rank has 256 components. The criterion of chirality (right- or left-handed-
ness) again distinguishes the components which are dormant in the standard achiral
environment from the active components. The 10 x 10 combinations of two achiral
suffixes and the 6 x 6 combinations of two chiral suffixes give 136 achiral components.
These form the complete energy tensor. The 120 combinations in which one suffix is
chiral and the other achiral give the dormant components of the extended energy tensor.

The term ‘ particle’ survivesin modern physics, but very little of its classical meaning
remains. A particle can now best be defined as the conceptual carrier of a set of variates.®
We shall frequently use the term ‘carrier’ as an alternative to particle.

& Tt is also conceived as the occupant of a state defined by the same set of variates.
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The definition includes composite as well as elementary particles. We do not set any
limit to the number of variates carried by one particle; but in practice the term will
be used only for fairly simple combinations, the more complex carriers being referred
to as systems.

We shall freely invent particles to carry the sets of variates which our form of
analysis groups together. The provision of a carrier is not so much a necessity of
thought as a necessity of language. It might seem desirable to distinguish the ‘mathe-
matical fictions’ from the ‘actual particles’; but it is difficult to find any logical basis
for such a distinction. ‘Discovering’ a particle means observing certain effects which
are accepted as proof of its existence; but it seems to be a matter of fashion or con-
vention that one sort of effect rather than another is accepted as critical for this pur-
pose.* Experimental test is concerned, not with the conceptual carrier, but with that
which it carries; and there is no reason to think the carrier less fictitious when it is
a proton or electron than when it is an admittedly fictitious particle. A much more
important distinction is between particles resulting from the analysis of actual matter
and those resulting from the analysis of matter subjected to artificial mathematical
constraints; these may well be distinguished as actual and fictitious particles.

The simplest kind of carrier in scale-free physics is the carrier of a complete energy
tensor and nothing more. If the energy tensor is unspecialised, i.e. not subject to
stabilising econditions, this will be called a standard carrier. The standard carrier is
a Vg

An ordinary energy tensor is separated into

Tw = pyvre? + S, (17-1)

where p, is the proper density, v# the velocity vector of the external motion, and S# is
an internal stress system. When §# = 0, 7 reduces to the outer square of a vector,

T = vk \Jpy . v A[Py. (17-2)

When the energy tensor of a particle has the form (17-2), we call v#,jp, the root vector.
That is the strict terminology; but the root vector will more usually be called the
momentum vector. The recognised momentum vector is not a scale-free characteristic,
and does not appear until we pass over to quantum physics; but when the transition
is made, the present scale-free particles will be given a fixed scale, and the root vector
will then become the recognised momentum vector of the fixed-scale particle.® The
use of this name for the root vector is therefore only a mild anticipation.

The mechanical characteristics of a classical particle are completely speclﬁed by a
momentum vector; so that its energy tensor is of the restricted type (17-2). But in

3 It is generally considered that the companion of Sirius, inferred from the elliptic motion of Sirius
itself, remained hypothetical until it was actually seen in 1862; but it is difficult to see why the detec-
tion of a radiational effect rather than the detection of a gravitational effect should be regarded as the
discovery. The most impressive proof of the existence of eertain microscopic particles is the sharpness of
their location shown in cloud-chamber tracks; but they are not classical particles, and sharpness of
location is not a normal characteristic. Our attitude towards this test seems to be as arbitrary as that
of the man who would not believe in the existence of the moon until he saw it eclipse the sun.

b This is more clearly seen by considering the reverse transition. Take a fixed-scale particle specified
by & momentum vector whose magnitude is defined by reference to o. The scale-free properties are those
which survive when we cut out the connection with o before making the approximation o = 0. Clearly
the dropping of the determinate scale will not introduce a new mechanical vector. The root vector must
therefore be identified with the momentum vector relieved of its scale.
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quantum theory there is no imperative reason for excluding particles (carriers) which
have an internal stress-system, more especially as quantum particles admittedly con-
tain an intrinsic angular momentum or spin. Thus we have a choice between particles
characterised by an unrestricted energy tensor with 136 components, and particles
characterised by a complete root vector or complete momentum vector with 10
components. The former have been called standard carriers or ¥4, particles; the latter
will be called vector carriers or 13, particles.

Vector carriers are obtained from standard carriers by imposing on the complete energy
tensor the stabilising condition that it is the outer square of @ complete vector. This con-
dition is invariant for tensor transformations and it reduces % from 136 to 10.

By further stabilisation we can obtain the spinless V; and ¥ particles mentioned
in §11; but there is an important difference. A symmetrical tensor of the second rank
can always be resolved into a sum of outer squares of vectors; so that by representing
matter as composed of ¥, instead of V4, particles we do not lose generality. But by
representing it as composed of V; or ¥ particles we lose the possibility of representing
vorticity; so that the analysis refers to material subjected to a constraint which does
not exist in nature. The ¥, and V; particles are therefore fictitiously simplified elements
of physical structure. The ¥V, particles (subject to adaptations which will be found
necessary when electrical theory is developed) are actual particles. So also are the
Vi3¢ particles; but since they include an internal stress system, which in classical theory
is a sign of compositeness, they are currently described as composite.

18. Mass-ratio of the proton and electron

The rigid-field treatment is simplified if we analyse the distribution in such a way
that initial and transition energies are carried by different particles. In that case we
distinguish:

Initial particles, for which no change of state is contemplated. They are generally
taken to be in a state of almost exact rest.

Transition particles, which have many possible states. Their initial state is a state
of zero energy tensor.

This kind of analysis is not a device invented for the present theory. It is the normal
procedure in Newtonian mechanics and astronomy. It was followed in the earlier
developments of wave mechanics; but unfortunately later writers abandoned it. The
classical procedure is to replace the system by an external particle moving with the
centre of mass and having the total mass of the system, together with internal particles
describing orbits relatively to the centre of mass and having suitably ‘reduced’ masses.
Since the total mass (rest energy) is carried by the external particle, the rest energies
of the internal particles are zero. Thus, choosing the coordinate frame so that the
centre of mass is at rest, the external particle is an initial particle and the internal
particles are transition particles.

The special case of a two-particle system is important, not only in itself, but as the
basis of the approximate treatment of more complex systems. In celestial mechanics
the only practicable line of attack on a system of three or more bodies is by applying
perturbations to two-body sub-systems; and a corresponding treatment is applied
in quantum mechanics. Our analysis of a microscopic system of two particles will
correspond exactly to the treatment of a double star in astronomy. If the masses of
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the components are m, m’, the system is transformed into an external mass »# moving
with the centre of gravity and an internal mass u classifying the relative orbit, where

M=m+m', u=mm[(m+m). (18-1)

It is to be noticed that when the internal particle is at rest (i.e. when the relative
coordinates are not changing) it adds nothing to the energy of the system; so that
its rest energy is not x4 but 0. It is therefore a carrier of transition energy only. The
external particle carries initial energy only, provided that we do not contemplate
changes of the motion of the centre of gravity of the system.

The double-star system as a whole is a carrier of variates, and can be described as a
particle. In our ordinary outlook it is a composite particle—a bi-particle—and the
carrier is separated into two carriers. This can be done in various ways, and the way
that ‘strikes the eye’ is not the most suitable for celestial mechanics. Mechanical
analysis separates it into an external particle carrying initial energy and an internal
particle carrying transition energy. A microscopic bi-particle, e.g. a hydrogen atom, is
separated in just the same way. If our study is confined to the properties of hydrogen
atoms, the other method of splitting the carrier—into a proton and electron—is a
confusing irrelevancy. These particles do not enter at all into the theory of the hydrogen
spectrum, the magnetic moments of the atom, etc. But the transformation to proton-
electron representation is needed when the results for hydrogen are made the basis
for the theory of more complex systems.

Consider a standard carrier of mass m, in an initial state of almost exact rest, and
let it make a transition to a state of momentum p;, p;, ps. At present it is unnecessary
to consider large values of p,,, and the energy computed in the ordinary way without
regard to the rigid field is, with sufficient approximation,

19 19 2}
X = m0+]01 + P 3 .

18-21
o (18-21)

This is the generic energy (§ 15). The effect of the rigid field is to multiply the expected
transition energy by — k; and by (15-92) the particle energy is

k(P +pe+p3?) _ P 0% 4 s
2m, 0 2u

where b= mylk = my[136. (18-23)

B =my— , (18-22)

To preserve a formal analogy between rigid-field dynamics and classical dynamics we
employ in quantum theory a momentum p, which is ¢ times the classical momentum
so that

P15 P2y P3 = P31, 1P, 1P (18:31)
2 .
and B =my +§M (p® = pi+pi+pi). (18:32)

We have remarked that the standard carrier will appear in our ordinary outlook as
composite, since it can contain an internal stress. We now divide it into two carriers,
carrying respectively the initial and transition energy, and distinguished as external
and internal particles; so that (18-32) is separated into

B, =my, E;=p?2u. (18-33)

EFT 3
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Further, since the purpose is to replace the composite particle by particles which
conform to the ordinary conception of a simple particle and are therefore not carriers
of an internal stress system, we must stabilise the two energy tensors after the separa-
tion, reducing their multiplicity from 136 to 10. The standard (1;;,) carrier is then split
into two vector (¥,) carriers.

In terms of wave analysis, the double wave function ¥ of the composite particle is
factorised into wave functions i, ¢, of two simple particles. Not every state of the
Visq is & combined state of two ¥,’s, the number of degrees of freedom 20 of the latter
combination being too small. We are here considering a transition to a separable
state, since otherwise the vector p;, p,, »; would not exist; but the state is pseudo-
discrete, and strictly it is only the mid-point of the 136-dimensional element dr that
is a separable state by definition. Stabilisation is introduced when we replace dr by
the product dr,dr; of two 10-dimensional elements defining pseudo-discrete states of
the vector particles. ‘

By (16-5) the reduction of & from 136 to 10 multiplies the mass m  of the initial particle
by 136/10. A change of k does not affect the transition energy, so that E, is unchanged.
Thus the final result is B—m B —p2u, (18-4)
where M=LE5my, p=1izm, (18-5)

Presumably this combination of an external and an internal particle of the simplest
possible kind is realised in the hydrogen atom. Accepting this identification, which is
checked in a great many ways by later investigations, the ratio

1362
is a fundamental constant of the hydrogen atom. If m,, m, are the masses of the proton
and electron, (18-1) gives m,, +m, = M, m,m, = Mu; so that m,, m, are the roots of the
quadratic equation M2 —mar+ a1 = 0, (187)
By (18-5), this becomes 10m?—136mmgy+m3 = 0, (18-8)

which is the equation found by the author in 1931.2 By solving this equation we find
the mass-ratio
7y = —2 = 1847-60. (18-9)
€
The constant #, is determined more directly from the observational data than 7,, and
would really be more suitable for observational comparisons; but since ¥, is the listed
constant, we have to use it in order to give the comparison in the customary form.
We call the masses given by (18-8) the standard masses of the proton and electron.
When we pass over to electrical theory, differently defined masses called current
masses will be introduced which have a rather different ratio (§ 29). The molar definition
of mass obviously does not extend to electrons, and the necessary extension is not by
any means self-evident. In any comparison with the so-called observational value of
m,,[m,, it is necessary to scrutinise the experimental procedure and reductions actually
carried out in order to ascertain the definition implicitly assumed, and modify our

& Proc. Roy. Soc. A, 134, 529.

—
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calculated value so as to adapt it to that definition. The observational test of 3 is
therefore not to be undertaken lightly, and is postponed.

On account of the importance of these results, I add some remarks on points arising
in the derivation. Since the molar definition of mass does not apply directly to these
microscopic particles, what is the justification for using the term at all in describing
them? The answer given in current theory is that a quantum mechanics can be
developed which has close formal analogy with molar mechanics, and the terminology
arises from this analogy. We have this in mind when we put the rigid-field hamiltonian
(18-22) into the form (18-32) so as to make it formally the same as a classical hamil-
tonian.

It is not necessary to use the method of the top particle in determining the effect of
stabilisation. We consider a distribution of s standard particles per unit volume at
almost exact rest, and having a total density (including that of the self-consistent field)
denoted by 7,,. Then by (15-7) the density apportioned to the particles is

P1ss = By = —T},/136.

The standard particles are then replaced by external and internal particles; but the
latter have no share of the initial density and can be ignored at this stage. When the
external particles are stabilised, the density apportioned to the particles is changed to
P10 = By = —T34/10; so that pyy/pys6 = 136/10. The standard particles and external
vector particles correspond one to one, so that s is unchanged; and the density ratio
136/10 is also the mass-ratio m/m, of the two kinds of particle. We note that only the
apportionment of 7}, is changed; there is no change of the total energy, because we are
comparing different modes of description of the same physical distribution—alternative
frrms of analysis according as double or single wave functions are employed.

We next introduce a small transition energy with density 67},. By (15-8) 67}, = 6Ey,;
so that all the transition energy is allocated to the particles irrespective of the value
of k. We therefore make no change in £, when stabilisation is introduced.

The whole investigation is scale-free. For convenience we begin by assigning a
mass m, to the standard particle; but the calculation is concerned throughout with
ratios to m, which are determined by comparing densities.

19. Rigid coordinates

The rigid-field treatment introduces a field energy which from the ordinary point
of view is extravagantly large; for example, the standard particle is associated with &
field energy which is — 137 times its own mass. Thus the particle is supposed to bein a
field of gravitational potential far outside our ordinary experience. If the necessary
field were of the irreducible type, like the gravitational field of the earth or sun, results
obtained in such fantastic conditions could have no practical application. But gravi-
tational fields can be created by a transformation of coordinates, and the intense fields
postulated in rigid-field treatment must evidently be furnished in that way.

The practical physicist will wish to apply the result of the last section, let us say,
to a gram of hydrogen in a litre vessel. The theorist, to avoid the complication of a
boundary, has made the hydrogen continue with the same density indefinitely. Since
the density is about 1026 times the average density of matter in the actual universe, the
continuation produces a large gravitational potential in the vessel. The systematic

3-2
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way of removing this potential, and so adapting the theoretical solution to the practical
problem, is by a transformation of coordinates. Our procedure of separating the par-
ticle energy from the field energy is equivalent; but it is useful to examine the problem
also from the point of view of coordinate transformation.

The fundamental requirement, that the field must be stationary for small changes of
the occupation factors, can be stated in the more practical form: the coordinates must
be so chosen that the field is stationary for small changes of the occupation factors.
Such coordinates will be called rigid coordinates.

We shall determine the rigid coordinates for a uniform distribution of particles in
an initial state of almost exact rest. If z, v, 2, ¢t are the rigid coordinates and 2’, y', 2, ¢’
the Galilean coordinates, the relation will be shown to be

’ 7

=x, yY=y, 2=z =~k (19-1)

Since the g7, have Galilean values, we obtain
gu=-1 gu=k, J(-g9=—-Fk (19-2)

The negative sign of 4/( —g) is fixed by the consideration that in changing continuously
from the accented to the unaccented system we pass through a branch-point of (—g)*.
By general relativity theory,* the energy and momentum per unit coordinate mesh
(which by (19-1) agrees with unit space-volume in rigid as well as in Galilean co-
ordinates) are T4 = T% \/(—g). Normally a pseudo-tensor-density t2 has to be added,
but this vanishes here because the g, are constants. The transformation (19-1) gives

Th= T, Th=—kTA (19-3)

Since the space coordinates are unchanged the number of particles per unit coordinate
mesh is unchanged, and the momentum and energy of a single particle transform in the
same way as ;. This makes it necessary to represent the momentum and energy of
a particle by a covariant vector p,,; for the covariant transformation law p, = p/, 02} /0x,,
gIves P1L=D1 Py=—kpy (19-4)
This is the reason why the momentum vector of a particle in wave mechanics is a
covariant expression p, = —fid/0x,, whereas in relativity theory it is primarily a
contravariant expression p# = mdx,/ds. It is this difference that makes it necessary
to identify the velocity of a particle in wave mechanics with the group velocity instead
of the wave velocity of the waves.

To create the artificial gravitational field we must, as it were, mistake the trans-
formed coordinates for Galilean coordinates.” That is to say, we account for the
difference T3 — I, not by any peculiarity of the coordinates but by the presence of a
field. Thus T}, — T} (or p,—p,) is the field portion W} of the tensor, and the part T
which remains when the field is removed is the true particle portion €. Accordingly

W, =T,-T € =3 (19-5)
Hence, by (19-3), Wi =~ (k+1)E, I5=-—kC (19-6)

3 Mathematical Theory of Relativity, § 59. Usually we do not distinguish between upper and lower
suffixes or between tensors and tensor-densities; but occasionally (as here) the distinetion is introduced.
b Thid. § 16. ’
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Dropping the distinction between upper and lower suffixes and between tensors and
tensor densities, (19:6) becomes in our previous notation

Wy =—(k+1)Ey, Ty=—kE,.

Since we are considering particles at rest, all other components vanish, and (15-7) is
satisfied. Thus (19-1) is the required coordinate transformation.
Thus in practice the rigid-field condition becomes:

A time t which is k1 times the Galilean time t' must be employed in wave mechanics.
' (19:7)

It is understood that the negative sign attached to k has been otherwise dealt with;
ordinarily it is got rid of, as in (18-31), by adopting in wave mechanics momenta which
are ¢ times the corresponding classical momenta.

After making our calculations by wave mechanics, we have to transform back to
Galilean time for the practical application of the results. By suitably modifying the
various constants—masses of the particles, magnetic moments, Coulomb energy, ete.
—we can adapt the equations to Galilean coordinates, and so take a short cut. The
modified constants are, of course, regarded as the ‘true constants’ by the empiricists;
and we have to take the ‘adapted wave mechanics’ as furnishing the officially recognised
definitions. But the fundamental relations are obscured in the adapted version; and
to make new advances we must proceed with the undistorted theory. Moreover, by
going the long way round, we are able to calculate the modified constants which have
hitherto only been determined empirically.

We have now three ways of picturing the difference between total energy and
particle energy: (@) by recognising the difference explicitly as field energy, (b) deriving
the particle energy from the total energy by transforming from rigid to Galilean
coordinates, (c) distinguishing the total energy as that of a mean particle and the par-
ticle energy as that of a top particle. The actual calculation (§§ 14, 15) has been based
on (a). The method (b) lends itself to systematic development, and is our stand-by for
difficult investigations. The method (c) replaces gravitation by exclusion, and goes a
long way to meet quantum theory in its specialised form.

20. The fine-structure constant

The standard carrier is the link between molar and microscopic description, because
it results from cutting up a molar energy tensor into additive elements without intro-
ducing any new properties or descriptions. Thus k& = 136 is the basal multiplicity.
When other multiplicities are introduced by stabilisation, the effect must be allowed
for by factors which are usually absorbed into the masses, ete. These complicating
factors are to be regarded as the reduction to the basal multiplicity 136 which allows
direct passage from microscopic to molar description. The passage is essential if the
theory is to have contact with experiment; because experimental data are always
molar data obtained with molar measuring apparatus.

The basal relation of particle, total and field energy is then

T, =—136E,, W, =—131E,, (20-1)

124

The coefficient 137 in the second relation is the fine-structure constant.
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The fine-structure constant is conveniently described as the ratio of two units or
‘atoms’ of action. Such natural units are obtained when we multiply a separable
element of energy by a time intrinsically associated with it. Corresponding to an atom
of particle action there must be an atom of field action 137 times as great. Two well-
known atoms of action are found experimentally to be in this ratio. In radiation pheno-
mena a constant unit is obtained by multiplying the energy of a photon by the radian-
period of the corresponding light-waves; the product is #. In particle phenomena a
constant unit is obtained by multiplying the energy e?/r of an elementary electric
doublet (electron and proton or positron) by the time equivalent r/c of the separation;
the product is e?/c. The ratio %ic/e? of these two units is found to be 137 with an experi-
mental accuracy of about 1 part in 10,000 (§32). Since the energy of-the doublet is
negative the ratio is strictly — 137, agreeing in sign with (20-1). The negative sign
cannot be evaded by considering the energy of a pair of like charges; this is not a
separable energy, since the resultant electric field must extend outwards until it is
quenched by induced charges in surrounding material.

The theoretical derivation of the relation fic/e? = 137 will be given in § 33. Meanwhile
the experimental proof that % and e2 (¢ being as usual set equal to 1) have the required
field-particle ratio clearly identifies # as the field unit and e? as the particle unit of
action. There should also be a unit 136¢? or $384 corresponding to total energy. The

factor
=187 (20-2)

will be called the Bond factor.* It may seem surprising that the field univ # is more
prominent than the total unit %/#; but this is only a matter of notation, for the factor
£ often occurs hidden in the empirically determined masses, ete. Quantum theory
began with the study of the radiation field (Planck’s law), and its early development
was very much dominated by spectroscopic applications; so that the field unit became
firmly established as its principal unit before the total unit had a look in.

The unit # is formally introduced as the coefficient in the momentum operator

P, = —1h0[0x,. (20-3)

The operator therefore refers to field momentum.? In our sequence this equation is
not derived until §105, though we shall sometimes use it in anticipation in order to
correlate our terminology with that of current theory. The derivation in §105 will
show definitely that the operational form (20-3) is restricted to field momentum, the
particle momentum in scale-fixed theory being given by a different form of symbolic
operator. . .

The ratio W, /T, is (k +1)/k, so that as k—co the field tensor and total tensor become
equal. The ideal continuous matter postulated in molar relativity theory is a system
with an infinite number of degrees of freedom. The conclusion that the field tensor is
then the total tensor justifies the common description of molar relativity theory as
‘pure field theory’. In passing over to microscopic theory, which is a mixed field and
particle theory, the first step is to divide the matter into standard carriers each limited
to 136 degrees of freedom; the relation W, = 7, for continuous matter is then replaced

a Attention was first called to it by W. N. Bond, Nature, 133, 327, 1934.

? In the initial state of a scale-free distribution the field, total and particle momenta have a fixed ratio,

and the scale can be adapted so that (20-3) represents any one of them. Thus it is sometimes unnecessary -
to insist on this restriction.
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by W = gT. The change is in W, not 7'; for we contemplate microscopic and molar
systems in the same environment, and must be able to replace a sufficiently large
collection of particles by continuous matter without changing the tofal energy.
Accordingly the relationis 7' = 7., W = 0.2

In uniform distributions (infinite plane waves) 7, is independent of the coordinates,
and we are able to employ particles which carry no coordinates since they oceupy the
whole undefined extent of the distribution. This leads us to regard the multiplicity of
a particle as decided by the energy tensor or momentum vector alone. But uniform
distribution is a special case, and the question arises whether the whole conception
will not break down as soon as we admit non-uniformity. Apparently the number of
degrees of freedom will then become infinite as in continuous matter. To answer this
we must remember that, in counting degrees of freedom, the potentiality of non-
uniformity is on all fours with the existence of non-uniformity. Thus the uniformity of
space distribution of our V4, or ¥, particles is a stabilised uniformity. We can in just
the same way stabilise any specified non-uniformity, described, for example, by a
particular eigenfunction. A distribution constrained to vary in a prescribed way has
no more degrees of freedom than a distribution constrained to be uniform. Thus the
analysis into V4, or ¥, particles does not break down in a non-uniform distribution.
The particles still ‘carry no coordinates’, but they carry stabilised functions of the
coordinates. The variation or non-variation with coordinates is always to be treated
as free information; this is evident when we consider the nature of wave analysis, for
when we decide to apply Fourier analysis to phenomena we do not thereby make any
assumption that an observer is called upon to verify.

We conclude that the degrees of freedom of a wave function, which determine its £,
are not contained in the ‘function’ part of it. They depend only on the degree of
constraint of the ‘wave vector’ part of it.

21. The inversion of energy

For all values of & the particle energy has opposite sign to the total energy. In
examining the significance of this reversal of sign we shall for simplicity consider
particles of multiplicity 1; so that by (15-92)

8, = —0X,, (21-1)

v

By inserting a particle of mass m at a point P we increase the energy in a small
region containing P by the amount m. But this is not the net addition to the energy of
‘the universe. The particle is the source of a field of gravitational potential, and every
particle in the environment has a small negative energy in this field. It will not be
surprising if the negative energy on integration exceeds the positive addition; so that
to obtain a net increase of energy it would be necessary to add a particle of negative
- mass. For localised classical particles there is a sharp distinction between the im-
mediate and the consequential effects of the addition of the particle at P; but for the
particles represented by infinite plane waves, the positive and negative energies are
superposed uniform distributions.

2 The opposite assumption W = W,, 7' = T,/f has certain attractions. It suggests that the process of
dividing matter into standard particles creates the initial energy — W/137 which we assign to the particles.
There is perhaps a legitimate way of developing this view; but it is important to show that it does not
cohers with the course of development that we have been following.
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Let the mass of a V] as ordinarily measured in a Galilean frame be m. In order that
rigid-field theory may be applicable we have to add to it a field energy — 2m, sc that
its total rest energy is —m. Instead of recognising this negative energy explicitly, we
reverse (in rigid-field dynamics) the direction of positive reckoning of energy. This
involves a reversal of the positive time direction, and eliminates the negative sign in
the transformation (19-1). We refer to this as the inversion of energy.

If the particle is now given a velocity » in Galilean coordinates, the question arises
whether it is the mass m or the mass m — 2m that is supposed to be set in motion. Since
the field is rigid the field energy — 2m is immobile, and the velocity refers only to the
particle mass m. Thus the kinetic energy is imv?; but owing to the inversion of energy
this will now be reckoned as —4mv? Thus the whole energy in the rigid field is
—m + $me? in direct reckoning and m — Jmo? in the adopted inverted reckoning. To
avoid dynamical paradox we must write this as m + Jm(w)?, thus attributing to the
particle a ‘velocity’ sv. Correspondingly, the particle in the rigid field has a momentum
which is ¢ times the classical momentum as noted in (18-31).

This is the source of the mysterious ,/— 1 which occurs so widely in the formulae of
quantum theory. But it is to be noticed that in the problems solved by wave mechanics
it is the quantum momenta that are real, and the corresponding classical momenta
are accordingly imaginary.

The inversion of energy is illustrated by considering a system of gravitating particles,
e.g. a star cluster. As usual the initial state is taken to be that in which the stars are
nearly at rest, and the cluster is therefore widely extended. If it contracts to a new
steady state, the kinetic energy K is positive; but there is also a potential energy
V = —2K, and the whole energy T is — K.*» Regarding the cluster classically, the
change of particle energy is §X = K. Regarding it as a system superposed on a rigid
field, the whole change of energy must be assigned to particle energy (there being no
other variable energy) in accordance with (15-8); so that 6 = 67 = — K. Hence
0F = — 48X as in (21-1).

We can introduce rigid-field stars (not identifiable individually with classical stars)
to carry 0F, and set 6F = X'lmo? But 0F is negative, so that either m is negative or v
is imaginary in the physically real cluster. This is avoided by inverting the reckoning
of energy so that 8 becomes positive and §X negative. Then the rigid-field stars have
positive m and real v; but if we leave in the cluster one of the original classical stars its
kinetic energy $mv?is now negative. Since it has positive mass, it must have imaginary
v. But it is a real star with a real classical velocity. Thus the classical velocity is 4.

The analysis into steady states is responsible for this change of view. When a par-
ticle is defined as the occupant of a steady state, we cannot dissociate from it the energy
necessary to the steadiness.? The particle energy hag therefore to be taken toinclude V.

We have stated (§12, footnote) that energy of interaction of the object-particles
with one another is part of the particle energy, the field energy being energy of inter-
action of the object-particles with the environment. This accords with our conclusion
here that, in rigid-field representation, ¥ (which is the infernal potential energy of the
cluster) must be counted as particle energy.

2 These are well-known conditions for the steady state of a cluster.
b An unsteady star cluster is treated later. This throws additional light on the relation between the
classical and the rigid-field treatment.



Multiplicity Factors 41

The ¥ particles may be called semi-classical particles, the true classical particles
being formally V. ,. We obtain ¥ particles by stabilising the orientation but not the
length m of the momentum vector. Then m is the only genuine observable and the
orientation of the momentum vector, or equivalently the velocity, must be given as
free information. The ¥, particles agree with classical particles in being exempt from
the uncertainty principle, but differ in that they are superpositions on a rigid environ-
ment whereas classical particles disturb the environment. They are obviously artificial,
and are useful only as a stepping stone to the natural quantum particles.

22, Mutual and self energy

When an object-body is observed in conjunction with a reference body, any measure-
ment that we make determines characteristics which belong, neither to one body nor
to the other, but to both jointly. It is, however, customary to allot these mutual
characteristics to the object-body, or more defensibly to partition them between the
two bodies according to some self-consistent scheme. This conceptual transfer, by
which self properties are substituted for mutual properties, is a habit of thought
which has been elevated into a convention, The language of physies is bound up with
this convention, and we can scarcely do otherwise than accept it in principle.

Consider two particles, one of which is the object-particle and the other, used as a
reference body, will be called the ‘comparison particle’. Let the particles be simple,
so that their mechanical characteristics are fully specified by complete momentum
vectors p,, p,. The mutual energy tensor is necessarily of the form

M, = $C(p,0,+D0,D.) : (22-1)

where C is a pure number; for there is no other tensor of the second rank, having the
dimensions of an energy temsor, depending symmetrically and inseparably on the
mechanical characteristics of the two particles. When self energy tensors are sub-
stituted, these must for a similar reason be of the form

Tfuv = Ap,upv’ T;w = Alp;p; (222)

For the moment we leave it vague whether these tensors refer to particle or total energy,
since the numerical constants €, 4, A’ can be adapted to either definition.
For particles at almost exact rest, the three energy tensors reduce to densities

Pm = Cmm’, p=Am? p' = A'm'? (22-3)

where m, m’ are the proper masses of the object-particle and comparison particle.
The usual practice is to allot the mutual density wholly to the object-particle.
This would give p = p,,, or Am® — O’ (22-41)
But this is an inconsistent procedure, since it makes no provision for the self density
of the comparison particle. We must not shilly-shally with the comparison particle,
assuming its presence in order that the measurement of p,, may be made and assuming
its absence when we interpret what the measured p,, stands for. The correct relation

p+P = pp gives Am? 4 A'm'® = Cmm'. ' (22-42)
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We have already found that the mass m of a simple ¥, (proton or electron) satisfies
an equation which is of this form. Comparing (18-8) and (22-42), we have

m =my, A:A4:C=10:1:136. (22-51)

The factors 10, 1, 136 are the multiplicity factors of the respective carriers. An un-
stabilised mutual energy tensor of multiplicity 136 is divided into two portions, one
being the self energy tensor of object-particles of multiplicity 10, and the other the
self energy tensor of comparison particles of multiplicity 1. By assigning to the com-
parison particle the multiplicity 1 we express the fact that it is employed as a standard
—that it is, in fact, the embodiment of the extraneous standard which takes part in
the ideal experiment by which p,, is determined. It is therefore idealised as a carrier
of only the one characteristic of which it is the standard. This will be examined more
fully in § 23.

As in the separation of a standard carrier into two vector carriers, the separation of
the carrier of mutual energy into two carriers of self energy is a resolution of a double
wave function into two simple wave functions; and it must be carried out in the rigid
field postulated by wave mechanics. The energy to be partitioned is therefore total
energy; and the constants in (22-42) refer to total energy. To obtain the corresponding
particle energies we divide by the multiplicity factors, and the three constants then
become equal. The particle energy-densities are simply

p=Am? p =Am?2 p,=A'mm'. (22-52)

This method evidently provides an alternative derivation of the fundamental
quadratic equation (18-8) for the masses of a proton and electron. It is only necessary
to justify the simple rule (22-52) for the particle energies, and then reverse the steps
of the argument. We do not stop to elaborate this, since the proof in §17 suits our
sequence of development better.*

The same treatment gives the mass 1 of an internal particle. Since the internal
particle has zero rest energy, p = 0; so that p’ = p,,. Hence, by (22-3) and (22-51),

A'm'? = Cum’ = 1864 um/’, (22-61)

so that ¢ = m’/136. This agrees with (18-5), m’ having been identified with m,.
The external V;, particle has a mass m = 136m,/10 = Cm/'[A4; so that

Am? = Cum'. (22-62)

This agrees with the crude formula (22-41) which makes no provision for the density of
the comparison particle. It appears that when a hydrogen atom is analysed into an
external and an internal particle the same comparison particle serves for both; but
when it is analysed into a proton and electron, each has its own comparison particle.
The difference is reasonable, because an actual separation of the external and internal
particles is unthinkable—we cannot ionise them apart, as we can a proton and electron,

Another way of looking at it is that, since our external particles are condemned to
remain always in the initial state of almost exact rest, there is not much that the
experimenter can do with them. If he has knowledge of their density it is not by the
standard method of determining the mutual density of an object-particle and com-
parison particle. He can, of course, surmount the difficulty by measuring separately

8 A derivation by this method has been given in Proc. Roy. Soc. A, 174, 16, 1940.
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the densities of a proton and electron and adding them. That is in fact the way the
problem is tackled when x is determined by the mass-spectrograph.

For comparison we collect the formulae showing the partition of a mutual (total)
density into self densities. The more definitive notation A, m,is used instead of 4’, m’

1364,mmy, = 104,m*+ A,mi (proton or electron),
1364, um, = Aym? - (internal particle), (22-7)
1364,mmy = 104, m? (external particle).

It is significant that the particles which have comparison particles (as shown by the
term A,m3) have electrical characteristics, whereas the external particle is neutral.

The root of the matter is that probabilities are multiplicative; so that in an analysis
of probability distributions a system appears as the product of its parts rather than
as the sum of its parts. But we have to reconcile this with the current representation
in which the characteristics of the system are the sums of the characteristics of its
parts. When wave mechanics gets fairly started, this is achieved by consigning the
additive characteristics to the exponents of wave functions, so that they get added
when the wave functions are multiplied. But at the beginning we meet the difficulty
that there can be no observable without a double probability distribution; so that, in
order to suit both multiplicative and additive representations, the most elementary
mechanical characteristic must be equally representable as the product and as the sum
of the mechanical characteristics of two parts. It is from this condition that we obtain
(22-7), which determines the relative masses of the most elementary parts so that they
are consistent both with additive and with multiplicative representation.

There is a rather different way of applying (22-7) which is sometimes more illumin-
ating. Suppose that the mutual energy tensor supplements the two self energy tensors,
so.that all three co-exist. If m, is replaced by —m,, the equations (22-7) express the
condition that the resultant density vanishes. The substitution of —m, turns the
comparison particle into a comparison hole; and the masses m, m, are determined so
that we can superpose on the uranoid a system consisting of an object-particle and its
comparison hole without changing the density. Since we are considering particles
at rest, no other physical characteristic is affected. Thus the change that we are
describing is purely formal.

From this point of view the selection of certain particles for intensive treatment as
object-particles involves a procedure which we call ‘specification’. As object-particles
they will have wave functions endowing them with a variety of characteristics, and in
order to give them the necessary freedom constraints must be removed. Since we are
here calculating rest masses, we are concerned only with the first step—the de-stabilisa-
tion, or removal of constraints. This is the process of specification; it means substituting
a particle of the required multiplicity for one of the stabilised particles (comparison
particles) in the uranoid; or equivalently, adding a particle of the required multiplicity
together with a hole cancelling one of the uranoid particles. Equation (22-7) determines
the masses so that specification does not affect the total energy tensor. This is a neces-
sary condition, because we must be at liberty to extend or diminish the object-system
by transferring particles from or to the environment; for there is no physical distinction
between the particles treated intensively by wave functions and those treated collec-
tively as an environment.
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23. Comparison particles

A full account of an experimental determination of the mass of an atom would
comprise a chain of investigations with the atom at one end and the standard kilogram
at the other. For theoretical purposes we shorten the chain and idealise the experiment
as one in which representatives of the atom and the standard kilogram directly interact.
It would, of course, make nonsense of the experiment if either were unrepresented;
and the theorist who forgets to put a representative of the standard into his equations
is guilty of the same absent-mindedness as if he had forgotten the atom. The duty of
the representative of the standard kilogram is to carry the standard unit of mass. To
make the problem manageable we embody the standard in a comparison particle which
can interact with the object-particles in the same way that they interact with one
another. '

As the carrier of the extraneous standard the comparison particle is outside the
object-system. But in investigating the theory of the measurement we have temporarily
to enlarge the object-system so as to bring it inside. The extended system which
includes a comparison particle will be called a perfect object-system. The perfect object-
system is self-contained in the sense that the measured characteristics attributed to it
do not involve anything outside itself. The comparison particle is, however, somewhat
modified, because inside the object-system there is only one variate for it to carry,
namely the scale variate, whereas outside the system it is an ordinary particle carrying
many variates. We stabilise all the characteristics of the internal comparison particle
except the one characteristic of which it furnishes the standard.?

From the classical point of view it seems paradoxical that the standard of mass should
be a body whose only inexact characteristic is its mass. But the reason is that, unless
a property is inexact, i is un-get-atable by observation. By § 8 the uncertainty of the
extraneous standard of mass has a fixed relation to the fundamental scale uncertainty
of the physical reference frame. When we embody the scale we embody also the scale
uncertainty.

Another difference between the comparison particle inside and outside the object-
system, which will lead to important developments later on, may be mentioned here.
The external comparison particle is a mean particle; the scale embodied in it is the scale
of the physical reference frame which is based on the collective distribution of all the
particles of the uranoid (§§2-4) and has only the minute fluctuation o, But the
comparison particle infroduced into the object-system, so as to interact with the object-
particles in the same way that they interact with one another, is an individual. This
will have a scale fluctuation of order /N times the fluctuation of a mean particle, and
therefore of order unity. It would seem that there is gross scale uncertainty of all
characteristics of an individual atom. The conclusion does not directly affect external
particles, whose masses are not determined by the use of a comparison particle but in
a more indirect way (§22). The internal energies have in fact large scale uncertainty;
but it is a feature of the method of analysis currently employed that the continuous

2 A measured mass m is the quotient m,/m, of the characteristics m,, m, of the object-body and the
standard. But a measured momentum vector py is not the quotient of two vector characteristics (py);,
(pa), of the object-body and the standard ; it is the quotient of (py); by the scalar characteristic m, of the
standard. The experiment must therefore be arranged so that characteristics of the second particle other
than m, are not allowed to affect the measurement—otherwise it is not a ‘good’ measurement.
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probability distribution of scale is replaced by a distribution over discrete eigenscales,
so that in each of the resulting eigenstates the scale is exact. The uncertainty of scale
remains as an uncertainty as to the state of the system—unless we are told, as free
information, that it is in a particular eigenstate.

We cannot at the same time be measuring the mass of a comparison particle and
using it as a standard for measuring other masses; but we follow the ordinary con-
vention that its mass when employed as a standard is the same as the mass which we
should find by observing it as an object-particle. This convention explains an earlier
result which seemed puzzling. By (22-51) the mass m’ of a comparison particle is the
same as the mass m, of a standard carrier, whereas we might have expected it to have
the mass 136m, of a ¥, the multiplicity assigned to it being 1. But when we express
the mass of a system in terms of the mass of a standard, we refer to masses measured
in the sameé way; so that the unit m’ is meant to be the mass found for the comparison
particle when it, in its turn, is being treated as an object-system. The identification
m' = m, shows that the comparison particle, before it is introduced into the object-
system, is a standard carrier. It is just an unspecialised element of the energy tensor
of the uranoid.

In this description of the comparison particle as carrier of the standard of mass we

“have run ahead of scale-free physics. In the scale-fres investigations of § 22 the com-
parison particles are carriers of the standard of density. We have found in (22-52)
that the mutual density is resolved into two densities in the ratio m?/m'2. Since these
are composed of particles whose masses have the ratio m/m’, there is not a one-to-one
correspondence of the object-particles and comparison particles in unit volume; that
is to say, the two distributions have not the same occupation factor. The conclusion
that, in the formula Ap, p, for the energy tensor (particle energy only), 4 has the same
value for all kinds of particles, refers to the particular state of occupation with which
the investigation is concerned, and is not to be applied generally. The formula for the
energy tensor corresponding to unit occupation is evidently

_ 1o,
§24 ’VO m 2

(231)

where ¥ is the normalisation volume, since for particles at rest this reduces to p = m/¥V.



Chapter III

INTERCHANGE
24. The phase dimension

The usual equations of wave mechanics postulate flat space. I do not think that there
is anything to be gained by trying to extend wave mechanics to curved space. Curva-
ture and wave functions are alternative ways of representing distributions of energy
and momentum; and it is probably bad policy to mix them.

We have introduced the curved space of molar relativity theory as a mode of repre-
sentation of the extraordinary fluctuation, and have obtained the fundamental relation
(3-8) between the microscopic constant o and the cosmological constants B, N.
Having got what we want out of it, space curvature no longer interests us; and we return
to flat space to pursue the specialised development of microscopic theory. That does
not mean that heneeforth we neglect curvature; we merely refrain from using the dodge
that introduces it. The scale uncertainty, instead of being disguised as curvature, will
be taken into account openly; so that there is no loss of rigour.

Accordingly the scale is now treated as an additional variate whose probability
distribution is specified along with that of the ordinary momenta and coordinates. The
variates of a probability distribution occur in conjugate pairs, and the variate con-
jugate to the scale will be called the phase. Since we have to provide for cases in which
the scale reduces to an eigenvalue, the scale is classed as a momentum and the phase as
a coordinate. The phase coordinate is represented as a fifth dimension normal to space-
time (which is now flat), so that the scale and phase are invariant for the rotations and
Lorentz transformations of special relativity theory.?

The scale uncertainty is primarily a fluctuation of the extraneous standard. But
fluctuations of the standard are reflected in the measured characteristics of the system.
The scale momentum is the measure of a characteristic which we may call the scale-
indicator; it is itself unvarying, but its measure shows these reflected fluctuations. In
the ordinary momenta the reflected fluctuations of the standard and the fluctuation of
the characteristics themselves are inextricably combined; so that we have to introduce
one unvarying characteristic to exhibit the scale fluctuation by itself.

We have employed a comparison. particle to embody the extraneous standard, and
have ‘perfected’ the object-system by including the comparison particle within it.
The introduction of the scale and phase dimension is an equivalent way of perfecting
the object-system; and the scale-indicator is the form taken by the comparison particle
when itis brought into the object-system. Itis a common practice to use a 6-dimensional
space to represent a system of two particles. Here one of the particles is a comparison
particle, and we only need to extend the object-space by one dimension. Moreover,
since the object-gystem has always to be congidered in conjunction with an extraneous
standard, the extra dimension is a permanent feature of its representation.

'Fo represent the extraordinary fluctuation or cosmical curvature the scale momen-
tum must be given a Gaussian probability distribution with standard deviation o,.

& This is nobt the same as the fifth dimension introduced by curvature. In § 6 the scale was repre-
sented by a distance 0’F’ in the  direction; but distances normal to space-time now represent phase, the
scale being a momentum,
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For most purposes this would be a pedantic refinement; and the scale may be regarded
as a stabilised characteristic. But now that each particle or small system has its own
scale variate, a new field of phenomena. is opened to theoretical investigation, which is
suppressed in the molar treatment of scale as an averaged characteristic. As remarked
in § 23 the comparison particle to be introduced into a microscopic object-system is an
individual; and the fluctuation of its energy is of order 1, in contrast to the mean com-
parison particle whose fluctuations are of order 10-3%, We have therefore to distinguish
two steps: the substitution of an explicit (5-dimensional) for a concealed (curvature)
representation of the mean scale, and in the explicit representation the substitution of
individual scales for the mean scale. Since the mean scale is practically a stabilised
scale, the second step is described as the de-stabilisation of scale.

For some purposes it is convenient to take an angular momentum as extraneous
standard, so that the scale momentum is an angular momentum and the corresponding
phase coordinate is an angle.® This facilitates the stabilisation of scale—or rather it
facilitates the de-stabilisation of the fixed scale commonly assumed. The feature of
an angular coordinate is that ‘infinite uncertainty’ corresponds to uniform probability -
distribution between 0 and 27. Thus, if J is an angular momentum and & the corre-
sponding angle, as the uncertainty of J diminishes & tends to a uniform distribution
over the range 27; and we pass without discontinuity from an almost exact (observed)
value to an exact (stabilised) value of J. Conversely, results which assume an exact
scale are extended to a slightly fluctuating scale by spreading the distribution uniformly
over a thickness 27 in an extra phase dimension. We call 27 the widening factor.
From the widened distribution we can pass continuously to distributions in which the
variation of scale becomes of serious importance.

The widening factor must be taken into account when we compare spherical space
(with stabilised scale) and flat space (with fluctuating scale). When the scale is stabilised
we have a gpherical space whose total volume is V = 272R}. Preparatory to de-
stabilisation this is to be re-ordered as a volume V; = 7.R} of three-dimensional space
having a thickness 27 in an extra phase dimension. Comparing it with a flat sphere of
radius R, and volume ¥, = {7 R}, we have

V=1V (24-1)
Sinee V- in natural units is a mass m, this is a relation of the form
| Mg = §my, (24-2)

and is an example of the law (16-5) connecting masses of different multiplicity. In
V; the scale is still exact and the phase necessarily has uniform distribution over the
thickness 27; the representation does not give any extra freedom. In ¥, the scale is
de-stabilised and the constraint is relaxed, so that the number of degrees of freedom
is raised from k& = 3 to k = 4. Conversely, starting with the volume %7 B} of flat space,
we multiply it by a thickness 27 in the phase dimension, then multiply by % to stabilise
the scale since the stabilisation reduces the number of degrees of freedom from 4 to 3,
and so obtain the volume 272R} of scale-stabilised space which is three-dimensional
but curved. '

2 The complete momentum vector contains both linear and angular momentum, so that there is no
ineongruity in this choice. :
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It is noteworthy that, by the stabilisation of scale, a flat sphere is transformed into
a hypersphere of the same radius R, This could scarcely have been foreseen, since
ordinarily we do not regard the two ‘radii’ as comparable characteristics. It is, how-
ever, in keeping with the principle of orthogonal projection in § 6.

More usually we take the phase and scale to be a linear coordinate and momentum.
The angular width 27 will then be replaced by a linear width 2#1. In the very simplest
problems the scale and phase are separable from the other variates of the system and
contribute an independent factor to the wave function. By the usual procedure in
wave mechanics the distribution of the linear phase z, defined only between the limits
0 <z < 271, is represented by a wave function periodic in 277, and the eigenfunctions
are the Fourier components %!, where n is an integer. The corresponding scale
momenta are p = n#fl. Thus:

When the scale is separable, ils eigenvalues form a series proportional to the integers.
(24-3)

When compared with other momenta and coordinates, the scale and phase have most
affinity with the energy and time. We may, in fact, regard them as a duplicate energy
and time referring to the comparison particle, and kept distinct from the energy and
time of the object-particle by representation in an extra dimension. In the eommon
representation of a two-particle system we have a similar duplication of the space
coordinates and momenta, those relating to the two particles being kept distinet by
using six dimensions. There is, however, a significant difference between the scale
momentum and the energy, because the scale-indicator is the carrier of reflected
fluctuations of the standard rather than of the standard itself. This inversion appears
in various ways. It originates in the fact that the extraordinary fluctuation has to be
combined negatively. We represented it at the end of § 22 by combining the object-
particle with a comparison hole. It is a matter of common sense that a standard is by
nature a divisor; so that it is the inverse of an actual standard that appears in our
multiplicative representation. We shall find that, owing to this inversion, the scale and
phase are space-like variates; so that they are distinguished not only in direction but
also in character from the time and energy of the object-particle. :

25. Interchange of suffixes

We observe only relative positions and relative velocities; consequently an observ-
able coordinate or momentum involves two physical entities. A measurement involves
four physical entities, two to furnish the observable that is said to be measured and
two to furnish the comparison observable used as standard. For example, in & measure-
ment of distance the extension between two given points is compared with the extension
between two graduation marks on a scale. Disregarding the conventional allocation
of the measure to two, or even to one, of the four entities concerned in it, what is

‘measured is a characteristic of a set of four entities; we shall call this characteristic a
measurable. A measurable has a quadruple probability distribution in the geometrical
frame,

For a casual measurement the form of the probability distribution is unrestricted.
But scientific investigation proceeds by systematic measurement, and the recognised
physical quantities are defined by measurements of such a nature that the quadruple
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probability distribution degenerates into a double or even a single distribution. One
or more of the four entities is taken to be the average of a large number of particles,
so that its variance is small and Gaussian; and the effect of the Gaussian fluctuation,
if it is not negligible, can be allowed for by appropriate corrections. The physical origin
and the mean or stabilised scale are used in this way; with the aid of one or both of
them we can generally avoid handling anything more complex than a double probability
distribution; but there is always a danger of losing important correlations by premature
averaging, and it is occasionally necessary to refer to the primitive quadruple dis-
tribution in order to pick them up.

We denote the two object-entities by 4,, 4, and the compamson entities by 41, 4,.
We can replace A1, A, by a mean scale; that is the simplification assumed in the method
of § 18. Orwe can use the physical origin for 4, and A4,; thatis the simplification assumed
in the method of § 22. Either treatment leaves us with a double probability distribution
(4,4, 4, or 4,, A}), since the fluctuations of the scale and of the physical origin are
known and can be eliminated if necessary.

Let the four entities be a proton and electron 4,, 4, and their respective comparison
particles A;, 4;. We denote a measurable of the four entities by [4,.4; A 2451, The

transformation [A, A, A, A >[A, AL A, AL, (25-1)

in which two perfect particles exchange comparison particles, is called interchange.

Since there is no recognisable distinction between different comparison particles all
observable results are invariant for interchange. Interchange is a relativistic trans-
formation from one comparison system to an equivalent comparison system, and is
to be treated on just the same footing as a relativistic rotation of the space-time frame.?

In problems concerning two or more particles the exigencies of mathematical method
compel us to attach identification suffixes to the particles. These are numbers chalked
on the particles by the mathematician for his own convenience; and, since they have
no physical connotation, observable results are invariant for their interchange.
Invariance for interchange of suffixes is amalgamated with invariance for interchange
of comparison particles by making the comparison particles the carriers of the suffixes.
Thus in a perfect particle the comparison particle carries the scale-and-phase and the
suffix, and the object-particle carries the other physical characteristics.

When a proton and electron are brought together into one system, so that they can
be replaced by an external and an internal particle, one comparison particle is elimin-
ated (§ 22). This is true in so far as comparison particles are carriers of the scale, for it
would be redundant to have two versions of the extraneous standard in one system.
But having now given them the additional duty of carrying the suffixes, we cannot
drop a comparison particle so completely. We must preserve a permutation variate,
whose changes provide the transformation (25-1) which would otherwise be lost. Thus
in the fusion of two particles into one system their two scale momenta are replaced by
a joint scale momentum and a permutation momentum, and their two phase coordinates
by a joint phase coordinate and a permutation coordinate.

We define the permutation coordinate to be an angle @ such that the transformation
(25-1) corresponds to 66 +a. Since -0+ 27 restores the original measurable the

a Proc. Roy. Soc. A, 122, 358, 1928. Interchange energy has since become very familiar, but its
relativistic basis iz not so widely realised.

EFT 4
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uncertainty of @is limited to a range 27, and similar conditions apply to the permutation
coordinate as to an angular phase. The widening factor 27 belonging to the phase which
drops out is bequeathed to the permutation coordinate which comes in in place of it.
The coordinate 8 is itself unobservable; that is to say it is a cyclic coordinate which can
be eliminated by ignoration of coordinates;* but the constant angular momentum
(permutation momentum) conjugate to it gives a term in the hamiltonian which we
call ‘interchange energy’. It was pointed out in my first discussion of interchange in
1928 that this is the energy known to us observationally as Coulomb energy. Thus the
transformation (25-1) is the beginning of electrical theory in the present sequence of
development.

Let (z, 1; ', 2) denote a configuration in which the particle on which we have chalked
the number 1 is at 2, and the particle with the number 2 is at 2’. A passage to the con-
figuration (z, 2; 2’, 1) can occur either as the result of spatial motion or as the result of
the permutation coordinate increasing by 7. We limit the term ‘interchange’ to the
latter mode of passage. According to the conceptions of the old quantum theory, this
would be a quanium jump; but in wave mechanics all such jumps are replaced by a
continuous flow of probability from one state to the other. This must be pictured as
an extra-spatial circulation involving a dimension normal to space-time. Evidently
the distribution of probability will not satisfy the hydrodynamical equation of con-
tinuity if we take account only of the spatial flow; and a supplementary term (Coulomb
term) representing the interchange flow has to be inserted. In very simple problems,
such as the metastable states of the hydrogen atom (§ 93), the combination of spatial
flow and extra-spatial flow merely tilts the plane of the resultant motion into a three-
dimensional space inclined to ordinary space. But usually the solution of the complete
equation of continuity of flow is a difficult problem making heavy demands on our
power of analysis. |

The importance of a relativistic transformation applicable to the variates of an
atomic system or sub-system can only be fully appreciated when we make a detailed
study of the procedure of wave mechanics. In a plane of relativistic rotation, i.e. a
plane in which all orientations relative to the environment are equivalent, ‘symmetrical
degeneracy’ occurs. The mode of dealing with symmetrical degeneracy in spatial
planes is well known, and this must be extended to the degeneracy in the extra-spatial
plane of interchange circulation. An important point is that the conditions of quantisa-
tion are such that there are no eigenstates with zero angular momentum in a plane of
degeneracy. Thus interchange circulation is not merely permissive; it is unavoidable.

The relativistic character of the interchange rotation, which gives it its importance,
depends on the indistinguishability of the particles interchanged. It seems to be
commonly thought that the difference of mass of the proton and electron, and possibly
also the difference of charge, will prevent the application of interchange to the proton-
electron system. As the theory is here stated, this objection does not arise since it is
the indistinguishable comparison particles that are interchanged. But in any case the
objection is ill-founded. We have two positions, two chalked numbers, two masses,
two signs of charge; and we have no initial information as to which of the eight com-
binations is being dealt with. The association of the chalked numbers with the two

& In actual application the problem is complicated by the non-commutation of the various angular
coordinates of a system. ‘
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positions, being relativistic, can be chosen arbitrarily; and we can proceed to develop
a dynamics which will enable us to test whether the larger mass must be placed at z,
or at x, in order to satisfy observational data.> The supposed non-interchangeability
of the proton and electron is based on the mistaken assumption that we begin with
free information as to which of them is at 2.

This applies even in classical mechanics. Consider a double star with components
so similar that the telescope does not distinguish them. We can observe only the
coordinates x(f), '(f) of two occupied points at various times &y, {y, ¢5, .... The velocity
of a component may be either

w(ty) — (ty) or ' (t5) — x(ty)
. ty—1y tg—ty

and the acceleration will be still more ambiguous—leading to a number of possible
values of the mass-ratio. It begs the question to say that in order to get the right mass-
ratio we ought always to associate the accent with the component of larger mass; we
do not know which has the larger mass until we know which is the right mass-ratio.
In spite of the indistinguishability the data can be sorted into a consistent orbit and
a unique mass-ratio determined. (The task is rather simpler for the double-star observer
than for the atom observer, since the former is dealing with exact pogitions instead of
probability distributions.) But mass is never used as a criterion of distinction, since
the method is still successful when the mass-ratio turns out to be 1.

The ‘indistinguishability’ of particles is best understood if we think of them as
carriers. It does not apply to the contents of the carriers, and it is to be noted that the
contents include the mass and sign of charge as well as less permanent characteristics.
It would scarcely have entered our heads to suppose that mass and charge are less
amenable to interchange than other variates, were it not that we commonly substitute
a stabilised mass and charge instead of the observables actually measured; but the
stabilisation should obviously not be allowed to interfere with the interchange. From
this point of view the same V,,, carrier can carry contents characteristic of either a proton
or an electron.

Thus no difficulty arises if we treat the permutation as interchange of the proton
and electron relative to the comparison system, i.e. as [4, 414, 4;5]>[4,A74,4]).
But, like any other relativistic transformation, it has an alternative aspect as an
equivalent transformation of the comparison system (i.e. the generalised reference
frame); and that is the form in which it is stated in (25-1).

26. The two-particle transformation.

For brevity we call the external and internal particles in two-particle systems
extracules and intracules.

When the hydrogen atom is analysed into an extracule and intracule the theory of
interchange is considerably simplified, because the interchange of the proton and
electron affects only the intracule. It is therefore desirable at this stage to examine

more closely the connection between the two kinds of representation of a binary
system. The familiar classical formula

M=m+m', p=mm'/(m+m’), (26-11)
8 The data will be furnished by the interaction of the two-particle system with other systems.
4-2
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ought not to be taken over into quantum theory (or into relativity theory) without
re-investigation. In wave mechanics it originates as follows.

Let 2, «, (2 = 1,2, 3,4) be the space and time coordinates of two particles with
mass-constants m, m’. The coordinates of the corresponding extracule and intracule are

r
_m,+ma,

@ m-+m’ €o = %y — Ty (26-12)
o m @8 9 m 9 D
Hence o, " mimix, L, o mim ox, 9L, (26:13)

and, defining a and g by (26-11), we obtain the well-known relation

1 02 1 92 1 02 1 02
m 3,00, m’ 0,0y~ m0x,0%,  wok,0E, (26-14)

Introducing momenta defined by p, = —i%d/ox,, ete., this becomes

PuDp +P;P:$' _ PaPﬂ+'ﬁ7uwﬂ
m m/’ M no

(26-21) .

In any volume of hydrogen there is the same number of particles of each of the four
kinds, so that the occupation factors are the same for all. Thus their shares of the energy
tensor are proportional to their energy tensors for unit occupation, and therefore to
Do Pp/m, etc., by (23-1). It follows from (26-21) that

(Tephmt Laphme = Lap)re+ T e (26-22)

That is to say, the protons and electrons taken together yield the same energy tensor
for the distribution as the extracules and intracules taken together. Since this is the
crucial condition that two equivalent representations have to satisfy, the interpretation
of i and p as mass-constants of the extracule and intracule is verified.

Regarding the two-particle system as a bi-particle with 8 coordinates z,, «,, the fore-
going is a transformation of ecoordinates in the 8-space to another orthogonal system
X4 &, From (26-12), dx £ :

Bpay) (26-31)

so that volumes are unchanged. This applies whether we include or exclude the time
coordinates; so that for corresponding volumes of the 6-space

[da, duydwyd doydoy = [dx,dx,dx,dE, dE,dEs, . (26:32)

and for the 2-time, _ [atde = [drdr. (26-33)
Also for corresponding ranges of momentum,

[dp,dp,dp,dp,dpsdp; = [dpydrydrydw, dw,do,. (26-34)

We notice also that mm’ = Mp. (26-35)

Since volumes in the 6-space are unchanged, the density of the probability distribu-
tion of the bi-particle in the 6-space is unchanged. The probability density is expressed
as the product of two complex conjugate double-wave functions ¥, ¥*, which are
accordingly unchanged in value. (The change of their arguments will, of course, give
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them a different functional form.) This makes it possible to adopt ¥ as the operand,
previously unstated but assumed to be invariant, of the differential operators that
have been introduced.

When ¥ is pseudo-discrete, it is necessary to define normalisation volumes. These
must be related so as to give a one-to-one correspondence of the four kinds of particles.
Three of the particles are located in ordinary z-space, and these must be assigned equal
three-dimensional normalisation volumes V,, = V., = V;,. But the coordinates £, of
the intracule locate it in a relative space (£-space), and its normalisation volume must
be delimited in that space. For unit occupation there is one bi-particle per volume
V.V, of 6-space; and since the probability density is unchanged by the transformation,
wehaveV, ¥, = V,V,,. Thusthefournormalisation volumes are equal, notwithstanding
that one of them is in a different space.

It follows that the density of intracules in £-space is equal to the density of extracules
in x-space—a result which was by no means self-evident.

It is to be noticed that the energy tensor of the intracule consists of density, pressure,
ete., in £-space; and there is no immediate justification for adding it to energy tensors
in ordinary space. The justification lies in equation (26-22). The transformation has in
fact been specially chosen so as (exceptionally) to make the addition legitimate.

Setting p® = p2+ p2+ pi, ete., (26-21) gives '

pm+pm’ = P2+ (2641

Introducing hamiltonians

h=m+p?2m, &= M+P2/2M,}
- {26
B o=m' +p'2/2'in', 7 = 'GJ'2/2’LL, ( 6 4:2)
we have, by (26-41) and (26-11), ‘
B+l =H'+7, (26-43)

We should like to make the theory symmetrical by giving the intracule a hamiltonian
n = p+w?2p0. (26-44)

But #+9+h+h'. We can, however, consider a transformation in which 2+ 54’z +1.
That means that when we transform from proton-electron to extracule-intracule
representation we change the zero-level of energy reckoning so as to add the required
density to the distribution. This transformation (described as ‘freeing the intracule’)
will play an important part in the theory.

27. Hydrocules

In a hamiltonian of the form P
E=ﬂ1+§ﬁ;, (27'1)
we distinguish g, as the rest mass and g, as the mass-constant of the particle. In a pure
inertial field the two constants agree. When they differ it is because the particle possesses
potential energy in a gravitational or electrical field, and this constitutes the difference
oy — fto. The characteristic mass of a particle, which is listed in tables of physical con-

stants, does not include these casual additions, and refers to the mass-constant. When
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M = u, the particle is said to be free; when u, = 0 it is bound. In classical theory an
intracule is a bound particle.

The principal investigations of quantal (scale-fixed) theory postulate free intracules.
In particular, Dirac’s wave equation of the hydrogen atom is the equation of a free
intracule. We have therefore to connect one important series of investigations in which
the intracule is assumed to be bound with another important series in which it is
assumed to be free. Evidently in passing from one to the other the zero level, from which
the energy of the atom is reckoned, is changed by the amount # required to free the
intracule. Such changes of zero are made light-heartedly in elementary physics; but
in relativity theory we have to take into account various consequential changes,
because the energy determines the gravitational field and hence the metrie.

Since the double-wave function of the V,;, will have to be re-analysed into simple
wave functions of an extracule and a free intracule, the energy must be added in
(18-32), before stabilisation is applied; so that (18:33) is replaced by

Ee = Mg, E’L = /Lb+p2/2/,6. (272)

These must continue to be the initial and transition energies, for otherwise the purpose
of the analysis would be frustrated. We are limited to small transitions, i.e. the transi-
tions (which considered individually may be large) are limited to a few particles in a
large assemblage, the rest of the assemblage remaining in the initial state. Thus in
practice ‘initial state’ means the state of the postulated environment or uranoid; and
(27-2) refers to an object-particle in a uranoid consisting of particles of energy m,.
These are not standard particles, because, owing to the change of zero level, the rest
energy of a standard particle is now

Mo+ = 1My = fimy. (27-3)

We shall call these particles hydrocules. _

We have therefore to recognise two systems of reckoning energy (used in different
parts of quantum theory and commonly confused) which will be distinguished as
systems 4 and B. The primary difference is:

System 4. Standard particle uranoid; bound intracules.

System B. Hydrocule uranoid; free intracules.

We turn now to the consequential effects of the change. In substituting hydrocules
for standard particles we lose +3= of the mass. A change of density of a large assemblage
seriously upsets its gravitational equilibrium. According to relativity theory only one

- density of a steady distribution of particles at rest is compatible with the constant of
gravitation k, namely the density of a pressureless Einstein universe. There are various
ways in which the hydrocule uranoid might be adjusted to equilibrium. The particles
might be re-spaced; or the constant x (and consequently %) might be changed. But the
simplest way is to couple with the change from 4 to B a change of extraneous standard.
The standard is changed by an amount such that

In passing from A to B, measured densities are muliiplied by . (27-4)

We keep the particle density s of the two uranoids the same. Then in substituting
hydrocules for standard particles the mass-density is divided by £; but the change of
standard restores it to its original value, so that the uranoid is still compatible with the
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original constant x and no other. Since our units are such that 8m«#i? = 1, # also is
unchanged. Accordingly

In passing from A to B, the constants s, « and % are unchanged. (27-5)

Since the extraneous standard is furnished ultimately by the urancid, the coupling
of a change of standard with a change of uranoid is a natural linkage which, in fact,
makes the whole transformation relativistic. The effect of the change of standard on
various measured quantities is shown in (8-4). In particular

In passing from A to B, lengths and times are multiplied by -3, (27-6)

Care must be taken only to apply (27-6) to quantities that are directly measured.
The scale-free particles that we have been considering are carriers of density; they are
not carriers of mass, and the masses attributed to them cannot be supposed to be
directly measured. The quantities m,, M, u are densities prematurely converted into
masses by a factor left to be decided when we pass over into scale-fixed theory. The
factor cannot be subjected to pre-natal transformations—or at least it would be a
meaningless complication to introduce them—and it is therefore treated as a fixed
constant which, like % and «, is common to systems 4 and B. Itis for this reason that
we keep the particle density s unchanged. The masses m,, , g accordingly transform
as densities. In particular, the rest masses m,/f, m, of the hydrocule and standard
particle in system .4 become my, mqy-+ p in system B.

The standard particle has been identified with the hydrogen atom, a standard
particle at rest being a hydrogen atom at rest both externally and internally. Insystem
B its rest mass is made up of an extracule of mass m, and an intracule of mass u. It is
worth while to restate the argument of § 18 in a form applying to this combination. So
far as external motion (motion of the centre of mass) is concerned the atom is repre-
sented by its extracule. If the extracule has a classical momentum p’ the additional
energy is, by the usual classical formula, §X = p'?/2m,> If the classical motion is
replaced by transition in a rigid field the additional energy is

0 = —1366X = —p'%/2u = p?/2u.

The classical motion and transition motion are distinguished by real and imaginary

values of p’; the imaginary p’ is, of course, not eqmvalent to a Lorentz transformation
of the axes of reference. The formula,

B, =my+p?2m,, B;=p+p*2u

provides for both an external classical motion p’ and a transition motion p; but it is
understood that these are alternatives, since we have not investigated the crogs-terms
that might arise if both were present simultaneously.

The point that we have to make clear is that, in adding the energy z in order to free
the intracule, we change the rest mass of the atom to m,+ z but we do not change its
mass constant m, for classical motion, e.g. for motion produced by a change of space-

time axes. The added energy is of the nature of potential energy, not set in motion when
the atom is set in motion.

* The extracule, by definition, cannot change from the initial state; but the momentum p’ can be
given to it by referring it to moving axes,
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28. Separation of electrical energy

We shall now introduce the hydrocule in another way, which throws more light on
its nature. The standard carrier or ¥4, carries an energy tensor and nothing more. We
have now to consider a particle which carries in addition a permutation variate, so
that when it is resolved into two vector particles the particles are distinctively suffixed.
The relation of the permutation variate to the 186 components of the complete energy
tensor will be investigated later. For our present purpose it is sufficient that the
particle has on account of the additional variate a phase space of 137 dimensions, and
is therefore a ¥ 3;,. By (16-5) the rest masses mg, mg of a Vg, and ¥, are related by

my = _“g? My = My/P. (28-1)

But m,/f is the mass already found for the hydrocule. The new particle can therefore
be identified with the hydrocule.

Both the standard particle and the hydrocule are hydrogen atoms. The difference
lies in the amount of observational probing supposed to have been applied. In the
standard particle the probing (which necessarily has a disturbing reaction on the
atom) is confined to determining, with more or less uncertainty, the two occupied
points of space; in the hydrocule it goes deeper and determines, with more or less
uncertainty, which particle is at which point. (It is understood that the probing can
alternatively be applied to variates conjugate to those mentioned.) Evidently the
deeper probing is implied in the picture of the hydrogen atom which the atomic phy-
sicist has in mind; so that for him the ideal hydrogen atom is a hydrocule. But for the
~ molar physicist the ideal hydrogen atom is a standard particle, i.e. a carrier of an element
of the energy tensor of molar hydrogen. It is only when an additional variate with no
molar counterpart is loaded on the carrier that the drop of rest mass from m, to my
occurs. The change from the standard particle uranoid to the hydrocule uranoid—
from system 4 to system B—is a change from the molar physicist’s to the atomic
physicist’s point of view.

The permutation variate introduces interchange energy, later to be identified with
Coulomb energy, so that it furnishes an electrical degree of freedom. Although a
unified treatment of electricity and gravitation is sometimes valuable, it is kept in
reserve, because practical applications require a more intensive treatment of electrical
than of gravitational effects. The purpose of unification is to obtain a clean start for
separation-—so that early haphazard separation may be replaced by a systematic
separation. The unified outlook has given us the fundamental result mg = my/B; but
we shall now keep the electrical (interchange) degree of freedom separate from the
136 mechanical degrees of freedom, and the self-consistent electric field separate from
the self-consistent gravitational field. Thus the hydrocule will be treated as a ¥,
that being its mechanical multiplicity. The whole theory of Chapter1risequally adapted
to the standard particle and the hydrocule, since it deals with the rigid gravitational
field, and %k is by implication the mechanical multiplicity. The hydrocule will have
additional electrical effects represented by correcting terms or factors inserted in the .
equations of a purely mechanical particle; but these will be found as corrections to
the equations of a ¥ ,, mechanical particle.

The mass m, of the hydrocule in system B agrees with the mass m, of the standard
particle in system A. It is therefore entirely consistent to regard the hydrocule as the
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Vi3¢ of system B and the standard particle as the V3, of system 4. The difference, as
already stated, is the difference of the hydrogen atom as conceived in atomic and in
molar physics. Taking the point of view of the atomic physicist, we shall now regard
the application of the theory of Chapter 11 to the hydrocule as its primary application.
The results will then refer to system B.

In the two-particle transformation (26-12) the particles are suffixed (the suffix
being indicated by an accent). If they were not, £, would have an ambiguous sign and it
would be impossible to proceed. Thus the two-particle transformation can only be
legitimately applied to a hydrocule. Having transformed the proton and electron into
an extracule and bound intracule, we usually substitute a free intracule for the bound
intracule in further analysis. This converts the system into a standard particle in
system B. We may say that the hydrogen atom appears in atomic physics (system B)
in two forms: in conception, as a hydrocule consisting of a proton and electron or
equivalently an extracule and bound intracule; in analysis as a standard particle
consisting of an extracule and a free intracule.

System A is the ‘observational system’. We study microseopic entities supposed to
be endowed with measurable characteristics; but, as remarked in §1, the terms
‘observable’ and ‘measurable’ are not to be understood too literally. All thatis guaran-
teed is that there is no self-contradiction in supposing them to have been observed or
measured. Whatever may be the logical status of the measurements supposed to be
carried out inside an atom or nucleus, ‘they are not the measurements performed by
the practical physicist from which our knowledge of atoms and nueclei is actually
derived. The ‘hard facts of observation’ are molar measurements. Thus when the time
comes to connect the results of theoretical analysis with laboratory measurements,
the object-system must be put into the environment postulated by the definitions of
molar quantities. In passing from molar to microscopic representation the energy
tensor of the uranoid must not be changed, either by altering the zero level of energy
reckoning or by altering the extraneous standard; all that may be done to adapt it to
microscopic theory is to dissect it into additive elements of suitable magnitude. By
definition the carriers of these elements of energy tensor are standard particles; so that
the uranoid postulated in experimental comparisons is system 4.

Thus results obtained in the theoretical system B have to be transformed to
system A before they can be compared with observational measurements. Most of
the quantities employed in physical description are connected in a roundabout way
with observational measurements. It is these intermediary quantities that give the
most trouble, directly measured quantities being transformed according to the com-
prehensive scheme in (8-4). The reduction of the intermediary quantities from B to 4
can only be found by tracing the detailed procedure by which their so-called ‘obser-
vational values’ have in fact been derived from measurements—since this procedure
is an essential part of their definition. Thus the calculation of the f-factors, introduced
into the values of the constants by the reduction from B to 4, is a continually recurring
problem, which crops up afresh whenever a new theoretical constant is to be compared
with observation, or rather with the result obtained by the current procedure of
reduction of the observations.

We have to accept the convention that any quantity that has been extensively used
in the systematisation of observational knowledge has acquired thereby the status
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of a vested inlerest. It if does not arise naturally in the theory we have to go out of our
way to introduce it in order to avoid talking a different language from everyone else.
Unless an internal inconsistency is detected the established procedure of reduction of
the measurements—which is the definition of the quantity—must be accepted without
amendment. '

29. Current masses of the proton and electron

By the quantal theory of the hydrogen atom the Rydberg constant for hydrogen is

1/ 1\2 pc :

This is the usual formula simplified by inserting the exact value 137 of #%c/e?. (The

derivation by fundamental theory leads directly to (29-1) there being no occasion to
introduce e? except as an abbreviation for %¢/1387.) Since the formula is obtained from
the theory of the free intracule, B, u are the constants Ry, ug for system B, %, ¢ being
the same in both systems. The wave-lengths used in an empirical determination of the
Rydberg constant are measures in system 4 ; so that the empirical Rydberg constant
Ris B,. Since R is the reciprocal of a length, By = SR, = SR by (27-6).

We introduce a mass u 4 defined by

A By (29-2)
IRYR AW .

Thus #, is the ‘current mass’ of the intracule. It is the quantity obtained from the
measured wave-lengths of hydrogen by the accepted formula (29-1), and quoted
everywhere as the ‘observed value’ of m,,m,/(m, +m,). We have therefore to recognise
Ht4 as the mass of the intracule in the observational system 4. On the other hand the
masses of extracules transform like measured densities, and we have

My = M, (29-4)

' M M 1362
Hence (—) = —%(—) = g% 29-5
M4 A /g 10 ( )

by (18-6), since the theory of Chapter 1t is now being applied to hydrocules in system B.
Using (29-5), the quadratic equation m?—mm + mp = 0 for the masses of the proton
and electron becomes in the observational system,

10m? — 136mmy+ fimg = 0, (29-6)

which gives the mass-ratio my,[m, = 1836-34. . (29-7)

The masses found in this way will be called the current masses of the proton and electron

to distinguish them from the standard masses in (18-8) and (18-9).

~ Since this is the first of many examples of adaptation of the theory to the obser-
vational system, we shall briefly review the principles involved. Hydrocules, in

separated electrical theory, are Vi3, particles, and the theory of §18 applies to them

as well as to standard particles; but the hydrocule application implies a hydrocule
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uranoid, so that the results refer to system B. In particular it is (#/s)p that is equal to
1362/10. The obvious way of comparing this constant with observation is to transform
the observational measurements into system B. But it is impracticable to go through
the vast accumulation of observational material and re-reduce it. Moreover, we cannot
ignore the existing systematisation of observational knowledge, and the vested interest
- of those quantities that have been widely used in this systematisation. This means
that in practice we have to adapt the theory to system A, not the observational data
to system B. If, in comparing the theoretical constant 1362/10 with observation, the
transformation of the observational data from system A to B is overlooked, the
comparison will be in error by a factor 5. Adaptation of the theory to system A4 means
that we include this factor in am/x so as to dispense with the transformation of the
measurements. We thus present a distorted version of the theory, which has, however,
the merit of being directly applicable to practical measurements. The characteristics
of the atom (and the resulting proton and electron) are distorted as compared with
the simple theoretical atom; but the essential point is that it is this distorted atom that
has been reached by those who proceed from the observational end, following established
practice and making no allowance for the transformation.

We proceed to a more general discussion of the observational system. Mass, momen-
tum, charge, ete., are primarily defined as molar measures. In some cases the definition .
can be extended to microscopic physics by the convention that the mass of a particle
is 1/n of the molarly measured mass of a large aggregation of n similar particles. The
elementary charge e can likewise be defined as 1/n of the molarly measured charge of
a body from which # electrons have been expelled. Quantities defined in this way will
be said to be molarly controlled. Molar control can be applied to the mass a of a hydrogen
atom and to the masses of all neutral atoms and molecules. But it cannot be applied
to the mass m, of an electron, since electrons cannot be aggregated separately.? Nor can
it be applied to the mass g of an intracule, since intracules cannot be aggregated

.separately from their extracules.

In quantum mechanics a fresh start is made, and the terms mass, momentum,
charge, etc., are applied to quantities which are analogues of the correspondingly
named molar quantities in a well-known analogy between quantum and classical
mechanics. We shall often have to emphasise that nomenclature in quantum theory is
guided by analogy, not by equivalence. Thus, even when a molarly controlled definition
of a quantity exists, quantum theory does not adopt it unless it fits the analogy. We
shall see in §30 that the molarly controlled definition of electric charge has to be
rejocted because it does not fit the analogy. But—to make a start—quantum theory
accepts the molarly controlled definition of the masses of neutral atoms and molecules.
This allows us to make a practical determination of the mass m of a hydrogen atom
(in'the observational system) in the following way.

The steps are: (1) the mass density of a crystal is found by molar measurement;
(2) the particle density (number of molecules per cu.cm.) is found by a measurement
of the lattice volume, depending on the comparison of the grating formed by the
crystal itself with a ruled grating; (3) the quotient of (1) by (2) gives the molarly

& Tn case it is proposed to determine the masgs by applying a correction for the electrostatic energy to
. the molarly measured mass of a large aggregation of electrons, we may point out that if a gram of elec-
trons were pub into a vessel of 10 em. radius, the measured mass (which includes electrostatic energy)
would be about 10 million tons.
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controlled mass ., of a crystal molecule; (4) the ratio 1,/u (molecular weight in terms
of H = 1) is found by chemical density comparisons.

The fact that hydrogen does not form a suitable grating, so that another substance
has to be employed as intermediary, may be set aside as an inessential detail. In
principle x and other neutral masses are determined by measuring molarly the mass
density, and also by the grating method the particle density, of a large assemblage.

There is no molarly controlled definition of £, and it rests with the quantum physicist
to state what he intends it to mean. As usual, the text-books give no explicit definition,?
and we have to institute a kind of detective inquiry to discover the definition that has
been implicitly assumed. Since $ is much more accurately known than any other
physical constant, the relation (29-1) plays a leading part in the accepted observational
values; and the observational system is deeply committed to a definition of # con-
sistent with it. Assuming that # has been duly defined (a matter that will be dealt with
later), (29-1) supplies the required definition of 4. The mass defined in this way will be
said to be spectroscopically controlled. The same system of definition must evidently
be applied to atoms of elements other than hydrogen. The accepted convention is
accordingly

The masses of extracules are molarly controlled, and the masses of iniracules are
spectroscopically controlled. (29-8)

The observational determination of g is completed in the following way. The
Faraday constant for hydrogen § = e/mc is found by molar measurement of the charge
resulting from electrolysis of a known mass of water. We have

= 137¢%/c = 137T%2m%. (29:91)
Inserting this in (29-3), Mg = 4m . 13T3RF 22, (29-92)

This, however, requires a small correction. The interpretation of the measured Faraday
constant as e/sc assumes that e is defined by molar control. We shall show in the next
section that the system of quantum mechanics requires that the elementary charge
in quantum theory shall differ slightly from the charge ¢’ defined by molar control; and
consequently the constant { = e/mc to be used in (29-92) differs from the observed
Faraday constant ' = e'/uc.

30. Molarly controlled charge

The rules for the change of units in the transformation 4 — B are: (a) densities are
multiplied by £, (b) lengths and times are multiplied by #-*. Rule (a) is the condition
for gravitational equilibrium, and it applies equally to molar and microscopic density;
independently of (b) it makes x invariant. Rule () is the result of the relation 87«42 = 1,
and it makes# (and therefore e) invariant. But the relation 87x%2 = 1 cannot be retained
in classical electrodynamics, which is a limiting form obtained by making %#—0; so
that rule (b) drops out. We have to consider what rule should be substituted for () in
transforming quantities defined by, or controlled by, classical electrodynamics.

In a quantum-specified process the action is given as a fixed multiple of the unit %
or ¢?/c. Since % and e*/c are invariant, the quantum-specified action is invariant in the

® Nor is there any definition of m,, which would fill the gap equally well.
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transformation 4 — B. In classical electrodynamics action is a given function of the
continuous variables which specify the process; and the connection between electro-
dynamics and mechanics is made by adding the electrical to the mechanical action in
the usual Hamiltonian equations. Since the basis of quantum nomenclature is the
analogy between classical and quantum dynamics, the new rule (b’) should be such
that, when coupled with (a), the action in a process specified by classical electro-
magnetic theory is invariant. Since classical action has the dimensions pZ* (when
¢ =1), the multiplication of p by £ involves multiplication of lengths by f—*. Calling
the resulting measure-system B’, the rule is '

In A— B’', lengths and times are multiplied by 5%, (30-1)
Or, combining (27-6) and (30-1),
In B B', lengths and times are multiplied by 7=, densities being unchanged.
(30-2)
We now have the chain of connection shown in the diagram.
Classical Molar control Micro- N ,
electrodynamics electrodynamics | 77T Bystem B
Micro- Micro- Systern B
electrodynamiecs mechanics | 777 ysem
Classical Classieal Molar control Micro- Svetom A
|- electrodynamics mechaniecs mechanics | 77777 ystem

The essential conditions which determine the diagram are:—Classical mechanics and
electrodynamics are connected in the observational system 4. Microscopic mechanics
and electrodynamics are connected by the theory of suffixed particles, and therefore
in system B. The changes of measure-system, shown in the diagram, are such that
action is invariant. The passage from classical to microscopie theory is made by molar
control; that is to say, microscopic elements are treated as simply additive.

The starting point is classical mechanics—the energy tensor 7, of molar relativity
theory. We reach micro-electrodynamics, which contains the action units e?/c and 7
by two routes; but the measure-systems disagree. This means that the upper molar
control, which is applied to electrical actions and energies, is inconsistent with the
lower molar control, which is applied to mechanical energies and actions. Since we
have adopted molar control for mechanical quantities (masses of neutral particles),
we cannot consistently adopt the molarly controlled definition of e?/c or #.

Consider the effect of the transformation B— B’ on a hydrogen atom in a specified
quantum state. By the usual theory of the eigenstates, the various energies, including
the Coulomb energy of the state, have fixed ratios to m, and therefore transform like
M when the measure-system is changed. But we have seen that m transforms as a
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density; and, since densities are unchanged in passing from B to B’, m is unchanged.
Hence

In B— B, the Coulomb energy of a specified quantum state is unchanged. (30-3)
Denoting the Coulomb energy by e?/r, we have (e?)5/7p = (¢*)/Tp. Hence |
(¢)p _ T . |
e = = f§E 30-4
() Tm A ( )

by (30-2). Setting e, ¢’ for ey, ey, € is the elementary charge as defined in quantum
theory. Primarily it is the measure in system B, but it also applies to the observational
system 4, since e is invariant for the transformation. The molarly controlled definition
gives ¢'; since it follows the other route from classical mechanics via classical electro-
magnetic measurement, which gives the measure-system B’. The constants #, § are
derived from ¢; and we have the equations

¢ = ﬂ""g%e, # = ﬁ 112%, %' = tgli%: (30'5)

giving the molarly controlled constants in terms of the actual quantum constants.

We can now proceed to evaluate m/u from (29-92), remembering that the constant
% is f7+ times (about 1 part in 3300 greater than) the ordinary Faraday constant §'.
The observational data, according to R. T. Birge® are it = 109677-568 +0:05 cm. %,
& = 957356 + 1-0e.m.u.g.”t, a7 = (1-67339 4+ 0-00031) 10~ g. With these values
(29-92) gives m/p = 1838-56 + 0-51. The theoretical value (29-5) is 1838-34. Or, since
M[p = my,[my+ 2 +m,[/m,, the comparison can be put in the form

m,[m,, theoretical 1836:-34, observed 1836-56 1 0-51. (30-6)

»

A rather more accurate observational value, depending on other kinds of measurements,
will be given later. '

31. Secondary anchors

Theoretical equations must be anchored to observation by giving observational
definitions of the quantities involved in them. For each such quantity an exact
procedure must be indicated by which its value can be obtained from experimental
measurements. In the last two sections we have fulfilled this obligation. It is desirable,
though not essential, that the required measurements shall be capable of high accuracy
in the present state of experimental physics. This requirement has also been fulfilled.
 Having provided a primary anchorage, we may (optionally) throw out secondary
anchors—alternative procedures, involving different experimental measurements.
These may become very numerous; for example, Birge cites seven essentially different
- ways of determining e/m. We cannot turn aside from the general development of
fundamental theory to enter on a comprehensive study of secondary anchors. On
the other hand we cannot ignore them altogether.

I shall here examine briefly three secondary anchors: (1) the spectroscopic deter-
mination of m,/m,, (2) the deflection determination of e/m,¢c, (3) the direct determina-
tion of A/e. These are measurements which have now attained high accuracy, and have

& Reporis on Progress in Physics (Physical Society), 8, 90, 1942.
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weight in determining the best possible observational values of the physical constants.
My examination will be limited to the question whether the usual reductions are correct
as regards f-factors. In other respects, I accept the validity of these methods on the
authority of current quantum theory, without accepting any responsibility.*

(1) Spectroscopic determination of m,[m,. Applying the formula (26-11) both to
hydrogen and deuterium, we have

M= Ty + My, Mg = MgtM,, = Mym,[(My+m,), pg=mgm,f(mz+m,). (31-1)

Setting M4 = am, u; = yu, we obtain

My, a—1
—2 = . 31-2
m, O‘(’)’—‘l) ( )

By (29-1), v is the ratio of the Rydberg constants for deuterium and hydrogen. Also ¢,
which is the ratio of the atomic weights, can be determined by density comparisons.
(On the authority of current theory, we accept a mass-spectrograph determination as
equivalent.) Thus (31-2) provides an observational test of the theoretical value of
m,,[m,, independent of that given in (30-6). The result (including values obtained from
a similar comparison of helium and hydrogen) is

my,[m,, theoretical 1836-34, spectroscopic 1836-14 + 0-22. (31-3)

Deuterium will be investigated in § 94. Meanwhile the problem is beyond the stage
that we have reached in developing fundamental theory; and the immediate import-
ance of (31-3), is, not; so much the additional and closer confirmation of the theoretical
value, as its indication of the nature of the extension of the theory to elements other
than hydrogen. Qur two measure-systems 4 and B have been based on hydrogen in
its two forms, standard particles and hydrocules, but they must serve for all other
elements. The ratio y refers to Rydberg constants in the same measure-system,
primarily system B, The energy u,; required to free the deuterium intracule has no
particular relation to the change of energy reckoning between 4 and B; nevertheless,
we are able to apply the quantal theory of the free intracule to deuterium, without
introducing measure-systems adapted to the constants of deuterium in the same way
that systems 4 and B are adapted to the constants of hydrogen.

To understand this, we must remember that systems 4 and B correspond to the two
kinds of hydrogen uranoid. There is no question of introducing a deuterium uranoid.
Obviously, when we substitute a deuterium atom for a hydrogen atom as our object-
system, we do not want to re-construct the whole universe with deuterium in place of
hydrogen. Secondly, the difference of measure-system depends on the extra degree of
freedom introduced by suffixing the particles. Suffixing is introduced in resolving a
hydrogen atom into a proton and electron, but there is no corresponding procedure
in resolving a deuterium atom into a deuteron and electron; for the deuteron is intro-
duced, not by analysis, but as a combination of two protons and an electron, and the
suffixing is already presupposed when we begin to build it.

% Unless some unforeseen obstacle appears, the theory of these methods can be developed rigorously
on the basis of the present fundamental theory. But it is impossible for one person to follow up all the
detailed applications, and ascertain whether the full investigation confirms the results commonly aceepted.

I therefore accept the methods as eorrect, unless I have definite grounds for suspecting error.
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The distinction of system B as the theoretical system (for quantal theory) and system
A as the observational system, though introduced in connection with hydrogen,
covers all kinds of matter. The transformation A — B separates the ‘electrical world’
from the ‘mechanical world’. These are superposed in the actual universe, and there-
fore in the observational system; but they are separated in order to apply to the
electrical world the intensive treatment developed in quantal theory. By carrying
out the separation in hydrogen, we separate them once for all; for all matter is composed
of hydrogen.

(2) Deflection determination of e/m,c. In this experiment the measured quantities
are the curvature of track of the electron and a molar electromagnetic force ¥ or H.
The current reduction assumes that the solution is the same as in classical mechanics.
The exact theory is particularly difficult, because one partner in the experinient is
microscopic and one molar. The molar element in the problem secures that a large
number of quanta are involved; so that the action can be treated as continuous and
the dynamical equations converge to classical form. But there still remains the
question of the correct formula for the Coulomb energy between a molar and a micro-
scopic charge. For two molar charges the formula is n, 7,¢'2/r;, and for two microscopic
charges it is n, n,e?/ry,. The commonsense conclusion is that in the micro-molar problem
it is 1, mye'efry,; this gives n,eV’ for a microscopic charge n,e in terms of the measured
molar potential V' = n,e’/r;,. Thus the charge as given by the current reduction is e
(not ¢’); and the result can be aceepted as a correct determination of the constant e/m,c.

I find nothing to suggest that a full investigation will disagree with the ‘common-
sense’ conclusion; but T have not gone far enough to be able to state that it is definitely
confirmed.

(3) Direct determination of hje. This depends on the conversion of an energy eV due
to the fall of an electron through a molarly measured potential difference 6V into an
energy of radiation hdv where v is a measured difference of frequency. Here % is
evidently the quantum constant (not A'), and e is the same as in the deflection experi-
ment. Assuming the ‘commonsense’ conclusion, the constant given by the usual
reductions is A/e.* Experiments are not yet accurate enough to distinguish between
hje and hje’; but a comparatively small improvement in the data will make this a
valuable test.

32. Calculated values of the microscopic constants®

All observational data in this section are taken from R. T. Birge, Reports on Progress
in Physics, 8, 90, 1942,

Experimental results are expressed in three traditional units which have no relation
to any theory. We have therefore to select three measured quantities to be used as
conversion constants. They must occur in the part of the theory believed to be exact;
and, subject to this, they should be the most accurately ascertained constants available.
There can be little doubt that the most suitable choice is the velocity of light (c), the

& In Proc. Phys. Soc. 54, 491, 1942, 1 stated incorrectly that the constant determined in this way was
the ‘official’, i.e. molarly controlled, constant i’je’.

b The corresponding section on molar, cosmical and nuclear constants is § 51. I have given a somewhat
gimilar discussion in Proc. Phys. Soc. 54, 491, 1942. Certain differences appear because in the earlier

discussion I accepted (under protest) the molarly controlled value e’ as the ‘official’ value of the elemen-
tary charge, and defined the official m, consistently with it.

-
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Rydberg constant for hydrogen (R) and the Faraday constant for hydrogen (§').
The measured values are:

¢ = (2-99776 £+ 0-00004) x 101% cm.gec.™,
R = 109677-58 + 0-05 cm. 2, (321)
&' = 9573-56 + 1-0em.u.g. .

From (32-1) it would be possible to reconstruct the ¢.¢.s. system if the original standards
were lost; and for the present purpose we regard (32-1) as the deﬂmtzon of the
centimetre, gram and second.

The calculated values of the constants are obtained by combining with (32 1) our
theoretical values of the fine-structure constant, the mass-ratio and ¢’/e. The collected
formulae are:

$
M) g2=137, (@) u =, ®) w=1m,]
(4) ¢ = pee, (6) ¥ = psh, © B=HE | (329
(7) M=m o T Mgy (8) o = mpme/(mp‘i"me),
9) R=3 (137) ﬁ;f’ (10) 3 =J—ZE )

For some of the constants the observed values given by Birge require correction,
because ¢’ has not been distinguished from e in the reductions. The constant primarily
affected is e/m,c. Birge gives two slightly discordant observational determinations,

namely, ~ deflection (1-75959 + 0-00024) x 107,

spectroscopic (1:75880 + 0-00028) x 107,
The discordance is not in the data but in the reductions. The deflection method gives
e/m,c correctly (§31); but the spectroscopic value is obtained from the spectroscopic
determination of m,/m, by using the Faraday constant $’, so that it corresponds to
¢’ /m,c. Multiplying it by /S’fl?f to obtain e/m,c, the comparison becomes

efmqc (deflection) 1-75959 + 0-00024,
e/m,c (spectroscopic) 1-75934 + 0-00028,
Mean 1-75947 + 0-00018.

The most direct comparison of theory and observation is given by the values of the
fine-structure constant and the mass-ratio, since these, being pure numbers, do not
involve the conversion constants. In the following comparison we give first the un-
corrected observed values given by Birge,? and second the corrected values which take
account of the distinction between ¢’ and e:

Uncorrected Corrected Theoretical

he/2me? 137-030 + 0-016 137-009 137
mpjm, 1836+56 + 0-56 1836-27 1836-34

The probable errors of the corrected values are substantially smaller owing to the
removal of the discordance between deflection and spectroscopic determinations.
They are about 1 part in 10,000 for both constants.

& The coincidence of Birge’s uncorrected m,/m, with the observed value in (30+8) is accidental,

EFT . 5
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Chapter IV
GRAVITATION AND EXCLUSION
34. Unsteady states

In molar relativity theory the mass of a system of particles, not necessarily in a
steady state, is defined as follows: Taking axes such that the centre of mass is instan-
taneously at rest, the mass M of the system is equal to the mass of a single particle,
having the position and acceleration of the centre of mass, which would produce the
same gravitational field, i.e. the same geodesics, at a great distance from the system.
If M is changing, the time to which the above-mentioned value refers is earlier than the
time of agreement of the geodesics by the amount of the light-time.

The meaning is that, so far ag remote gravitational effects are concerned, the system
is replaceable by a particle of proper mass M at, and moving with, its centre of mass.
Evidently, if the system is in the midst of an empty region large compared with its
own dimensions, the system and the equivalent particle make the same net addition
to the energy of the universe.

Until recently there was disagreement between the results of different investigators;
but the discrepancies have been cleared up and there is now general agreement. For
a system of gravitating particles,®

M = M,+3K+2V, (34-1)

where M, is the sum of the rest masses of the particles, K the kinetic energy, and V the
internal potential energy Xxmym,/ry; K and V are defined as in Newtonian theory, the
approximation being only correct to this order. Even this approximation involves
very lengthy calculations. Using the Newtonian identity

2K +V = d2CJde, (34-2)
where C is the moment of inertia of the system about its centre of mass, (34-1) is reduced
to the forms M = My+ K+ V +3d2C/de, (34-3)

M = M,— K +d2C/di.> (34-4)

, By (34-3) the system possesses, in addition to the energy M, + K + V usually recognised,

an expansion energy 3d2C/di%. The expansion energy can be associated with the gravi-
tational waves set up by the changes of the system. We distinguish M;+ K + V as the
local energy. The local energy satisfies the law of conservation; and it is the custom to
consider this alone. But if we suppose the local energy to be the whole energy, changes
of the gravitational potential energy of the remote environment are produced and

2 Hddington and Clark, Proc. Roy. Soc. A, 166, 469, 1938. I think this is the only paper that gives
explicitly the equivalent mass M ; but the same general formulae were obtained by Einstein and Infeld
and by Robertson. Levi-Civita, who had previously obtained a different result, re-examined his in-
vestigation and announced his agreement. There was a mistake in de Sitter’s pioneer calculation in 1916.

b [ Fditorial note:——A subsequent investigation by Clark has shown that the above definition of the
mass of a system (as the mass of an equivalent particle which produces the same field at great distances)
is possible only in the case of steady systems, i.e. systems for which d?C/di? vanishes. Non-steady systems
can be included in the discussion if (following Whittaker and Ruse) Gauss’ theorem be used as the basis
of definition of mass. It is found that the mass can be expressed in terms of two volume-integrals, one
of which gives a contribution M +3K +2V as above, while the second yields an additional term
—3d?C/de®. Adding these terms we obtain a final result M = M+ K+ V.]
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left unbalanced; so that in its wider application the law of conservation breaks down.
The expansion energy balances these changes and restores conservation.

Since the laws of quantum mechanics are analogous to those of molar mechanics,
we shall apply this result tentatively to a wave packet. Consider a Gaussian wave
packet in three dimensjons with an initial standard deviation o in each coordinate, so
that C = 3mo?. According to the solution given by current wave mechanics,® after
a time ¢ the standard deviation o, is given by

07 = o2+ 12 [402m2.
Hence the expansion energy of the wave packet is

1d20/de2 = 3%2/40m. (34-51)
It is also found that the momentum p, has the mean square value p? = %2/402; so that
the mean kinetic energy (p2 + p2+ p2)/2m is

K = 3#2/8c%m. (34-52)

Thus d2C/di? = 2K; and it follows from (34-2) that V = 0. This was to be expected,
because the wave packet represents only one particle, and there is no gravitational or
electrical attraction between elements of the same particle.

Setting V = 0 in (34-1) the wave packet has a total energy M+ 3K. A distribution
which is not expanding has total energy M,— K by (34-4). Thus in order to inhibit
expansion we have to incorporate a constraint with energy V = —4K. Leaving aside
the constant M,, the energy 7' = 3K of the free packetis madeup of theenergy # = — K
of the bound packet and the energy W = 4K added by removing the constraint.

Since we are here dealing with a three-dimensional distribution of probability, the
multiplicity factor is £ = 3; and the foregoing is an example of the relation 7' = — Lk E,

= —(k+1) K. Evidently (34-1) is the special case for spinless V; particles of a general

formula M = My+kK+2V. (34-6)

The term 2V calls attention to the fact that the conventional reckoning of M is a
double reckoning. For we attribute to the isolated system an energy which is really
a mutual energy of the system and the rest of the universe; so that when each part of
the universe is treated in turn as an isolated system the energy gets counted twice over.
The double reckoning extends to kinetic energy, since the kinetic energy of a particle
is derived from its rest energy by a Lorentz transformation. It applies also to the
potential energy — 2m¢ or Ze® of the system in an extraneous gravitational or electric
field. But it does not extend to the internal potential energy, where the contribution
of each pair of particles is reckoned only once. In (34-6), V is multiplied by 2 to trans-
form it to the dcuble reckoning in which all the rest of the energy is expressed.

Tt will be seen that in a pseudo-discrete assemblage, the total energy is turned into
a particle energy E = — T'/k by introducing a constraint to inhibit dispersal of the
particle. We have to debit the non-dispersing particle with the energy — W of the
constraint, or equivalently credit it with an energy W, which we have called the
complementary field energy. The relation d2C/di* = 2K is independent of the size of
a wave packet; and the formulae remain true for a particle whose probability distribu-
tion occupies the whole extent of the assemblage. Thus the assemblage (which is, by
definition, in equilibrium and therefore not dispersing} is analysed into non-dispersing

a (. G. Darwin, Proc. Roy. Soc. A, 117, 268, 1927, Darwin’s o is 4/2 times our o.
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particles carrying the particle energy £; and its field energy W = — (k+ 1) E results
from the inhibition of the dispersal. The present analysis shows further that the
relation between particle and field energy is not altered by localising the particle in a
small wave packet.

35. Under-observation

It is recognised that a system is disturbed by the process of measurement. Measure-
ment in the broadest sense, i.e. the acquiring of information which we formulate as a
measure, is not necessarily an artificial interference; the system may spontaneously
broadcast information by starting a chain of causation which reaches our sense organs.
But whether the information is given spontaneously or extorted by deliberate probing,
it has a selective bias; because it refers to the system in a particular state of interaction
with the environment. It is impossible that we should have genuine information about
states of the system incompatible with the furnishing of information; and we convict
ourselves of fabrication if we pretend to describe such states.

We commonly speak of an ‘undisturbed state’; but we can have no knowledge of a
state undisturbed by interaction with the environment. For consistency the normal
state (loosely described as undisturbed) must be defined to be that in which a specified
kind and amount of interaction with the environment is occurring, or equivalently
the system is subjected to a conventional amount of observational probing; and its only
characteristics (other than stabilised characteristics) are those revealed by this
probing. Sporadic additional information cannot be incorporated, because our
possession of it is evidence that the system is not in the normal state that we profess
to describe; but it may prompt us to re-define the normal state so as to include the
probing necessary to furnish the additional information systematically. Thus it may
well happen that in different types of investigation, and at different stages of develop-
ment of the theory, the normal condition is differently defined. The re-definition creates
what is to all intent a new kind of system or particle with different specific character-
istics. We have had an example of this in § 28, where the hydrogen atom, first identified
with the standard particle, becomes, when probed for additional information, identified
with the hydrocule, and its mass is decreased in the ratio f. Similarly, when a V is
changed to a ¥}, by stabilisation, the specific character of the particle is altered because
the information to be dug out of it is less extensive.

We have insisted on the importance of defining the postulated environment of the
object-system. We must equally insist on the importance of defining the amount of
interaction or interference from outside. Just as the irregular natural environment is_
replaced by a standardised uranoid, so the meddlesome activities of the experimenter
are replaced by a standardised amount of interference. This supplementation is
associated with the transition from molar to microscopic physics; in this transition we
greatly elaborate the specification of an object-body, and it is not surprising that some
addition to the ordinary molar specification of the environment should be needed.
In general theory a system is described by generalised coordinates and momenta
%,, P, The standard probing is specified qualitatively by giving a list of the z,, p,
supposed to be measured. In the simplest kinds of system it is sufficient to specify the
total number of such pairs, i.e. the multiplicity. But it is necessary also to specify
the keenness of the probing; and we shall now consider how this can be done.
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In trying to lay down a standard procedure of measurement we encounter the well-
known difficulty that observables do not in general commute. Our immediate concern
is with the non-commutation of z, and p,, which makes it necessary to treat them
together as a joint-observable. Our information as to the probability distributions of
x, and p, corresponds to one type of measurement which we shall describe indifferently
as measurement of the coordinate or of the momentum. The simplest way of specifying
a standard ‘degree of keenness’ of this measurement is to require that the combined
uncertainty of z, and p, shall have the minimum value fixed by Heisenberg’s principle.
The system is then said to be fully observed in this coordinate.

Suppose that the observational probing ceases at a time ¢, and we consider the
probability distribution at a later time #,+ 7. The combined uncertainty of z, and p,
increases with 7, and the system ceases to be fully observed. This is illustrated by the
expanding wave packet in § 34, which satisfies the condition of full observation at the
initial instant; as ¢ increases the dispersion o, of z, increases, and there is no com-
pensating decrease of the dispersion of p,. The time 7, measured from the instant of
cessation of full observation, vs a coefficient of under-observation’ of the system,

Just as we take the zero-temperature uranoid as the standard environment, so we
take full observation as the standard probing. When it is necessary to consider a
different environment, the disturbance of the uranoid is represented by an object-field
which is specified by appropriate variates (potentials). Similarly a difference from the
standard probing is represented by a ‘field of under-observation’, which must be
specified by appropriate variates. The general theory of fields of under-observation
might be developed as an analytical exercise; but so far as I can see it has no practical
interest. I therefore confine attention to the one case of practical importance, namely,
the uniform under-observation which results from abrupt cessation of the standard
probing. This is specified by a single variate 7 equal to the time-interval between the
cessation of probing and the instant considered. If this is an observed time-interval
it is subject to uncertainty, so that we have a probability distribution over 7; but we
may also consider problems in which 7 is given as a stabilised characteristic.

Since 7 increases with the time ¢ = ¢,+ 7 that is being considered, there has been a
great deal of confusion between 7 and the coordinate ¢. The confusion is increased by
taking f, as the origin of time, as in the current discussion of the expanding wave
packet; so that the same symbol serves in two capacities, as a time-coordinate and as
a measure of under-observation.

In statistical mechanics the time is distinguished from the other coordinates at the
very outset. ‘Probability distribution over time’ has no intelligible meaning. A dis-
tribution function f(x,y, 2; t) gives the distribution over x, ¥,z at the timet. We can extend
it to f(z,y,z,7; 1) giving the distribution over z, ¥, z, 7 at the time ¢; but there is no
homology between the measure of under-observation 7 and the space coordinates.

If it were desired to treat the four coordinates homologously, the physical origin of
time would have to be defined, in the same manner as the physical origin of space
coordinates, as the centroid of a large number of events uncorrelated in their time
distribution. That leads to mathematical phantasies which have no relation to physical
experience. Moreover it would be necessary to postulate a negative o2 for the time
direction (which could not be provided by any distribution of real events), because the
relativistic homology is between space and imaginary time. But we can obtain a
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relativistic extension of statistical mechanics by taking as the fourth dimension, not
time, but the scale and phase dimension. The essential features of a natural environ-
ment are represented by a uranoid of particles with incoherent, i.e. uncorrelated, phase;
so that by a straightforward extension of §2 we obtain a physical origin which has
Gaussian uncertainty of its phase coordinate as well as of its space coordinates. The
scale fluctuation has to be combined negatively; so that the uncertainty of the origin
in this direction is effectively —o2. The scale and phase have therefore a time-like
relation to the spatial momenta and coordinates.

In 1928 Dirac made his famous relativistic extension of wave mechanics. The wave
vectors which he introduced have a very general application, by no means confined to
statistical theory; and we shall use them widely in Chapters v—vir for relativistic
treatment either of the time coordinate or the phase or both together. But Dirac
wave functions, which are used to represent probability distributions, are confined to
statistical mechanics; and the common idea, that the fourth coordinate concerned in
them is the time, is evidently a misapplication. As shown above, it is the phase that is
relativistically connected with the space coordinates, like the time in non-statistical
theory. The invariance of Dirac’s wave equation is not Lorentz-invariance—not
invariance for changes of motion of the system or the axes of reference. It is an
invariance involving the phase coordinate which has formal analogy with Lorentz-
invariance. We shall find later that the phase is the time analogue in the analogy
between quantum and classical mechanics.

Thus we have to guard against the triple confusion which occurs in current theory,
where the time may be either the coordinate £, or the measure of under-observation 7,
or the time analogue (phase).

36. Structural and predictive theory

The problems of wave mechanics fall naturally into two classes, structural problems
and predictive problems. When the theory is used for prediction we must suppose that
observation has ceased some time before the epoch to which the prediction applies;
and in such problems 7 plays an important part. But when it is used to investigate
structure—energy levels, magnetic moments, fundamental constants, etc.—the
structure sought for is that of the system in the standard fully observed condition,
and 7 is not involved.?

Since concentrations of probability tend to disperse, predictive problems may also
be described as ‘problems of decay’. The expanding wave packet is the most elementary
predictive problem, but it is scarcely typical; as regards method it seems to stand
entirely by itself. The most usual practical problem of decay is: given the initial occupa-
tion of a set; of eigenstates, to determine the change that will occur by transition during
a subsequent period 7. Here the variates of the problem are the occupation factors.

We find the same separation in classical statistical mechanics. The theory of thermo-
dynamic equilibrium is the structural part; and the calculation of the rate of decay of
deviations from thermodynamic equilibrium is the predictive part. It is emphasised

s If ‘prédicbion’ is used in the sense of calculating results that can be verified experimentally, struc-
tural theory abounds in such predictions. But in the above classification these are excluded; structural
theory does not foretell the activities of experimenters, and its results are calculations of what they can
do, not predictions of what they will do.
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that some of the most significant results, such as the Maxwell-Boltzmann laws, apply
only to thermodynamic equilibrium; and I think it is unfortunate that the distinection
has not been made equally clear in quantum theory. When comparing the equilibrium
wave mechanics of the hydrogen atom with the non-equilibrium wave mechanics of
an expanding wave packet, it is the dissimilarity rather than the affinity that should
be emphasised.

Our investigations will lie almost wholly in structural theory. Thus the standard
conditions of full observation are postulated, and 7 is not involved. At a later point
predictive theory is linked on. When statistical theory is applied to an isolated system
in classical theory it is necessary to ‘enclose’ the system in order to keep the entropy
constant. The enclosing boundary can be regarded as a mathematical constraint
which continually restores the negative entropy that leaks away in natural conditions.
Here the condition of full observation is the mathematical constraint which keeps the
entropy constant. If the observation is not continually renewed, our information
becomes stale; and the entropy, which is calculated from the probability relative to
existing information, decays.

The standard procedure in wave mechanics is to represent physical change by changes
of the occupation factors of steady states. I shall therefore take it as part of the
fundamental definition of a wave function that it represents a steady state, the
occupation factor alone being variable with time. If we admit unsteady states physical
change is represented sometimes by continuous motion and sometimes by transitions;
and the treatment becomes unsystematic. The only kinds of motion admitted in our
representation are (1) steady circulation of probability within a state, (2) extra-spatial
flow of probability between states, which may be steady or unsteady. A Lorentz
transformation is contrary to the spirit of wave mechanics, since it introduces a
progressive motion not coming into either of these categories.

When the theory is approached in this way there is not much danger of confusing
the three kinds of ‘time’. The only functions of the time coordinate are occupation
factors; the time-like variate in the wave functions is the phase or time analogue.
The time 7 used as a measure of under-observation is set aside as peculiar to predictive
theory.

The common practice is to merge the occupation factor in the wave function as
its amplitude j*. The common wave function ¥ = Xjiyr, is then variable with the
coordinate time. I think the introduction of these unsteady wave functions is un-
necessary, confusing and, in practice, attended by serious lack of rigour. I would not
say that this kind of extension is to be ruled out altogether; but I have no use for it
here. Those who contemplate it should remember: (1) that it is perilous to apply the
results derived from a study of statistical equilibrium to non-equilibrium conditions,
and blind generalisation should not be attempted, (2) that the unsteady state has an
expansion energy which must be duly taken into account.

37. Physical and geometrical distribution functions

We return to equation (1-1) to take up a new line of development. If the distribution
function f(x,) of the coordinate z, of the physical origin is known, the distribution
function g(z) of the geometrical coordinate x of a particle can be converted into a
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distribution function %(£) of the physical coordinate &, or vice versa, by a method
familiar in the theory of statistics.
Since x and x, are uncorrelated, and x = x,+ £,

WO = | gteo €1 dey (371)
Denoting the Fourier integrals of f, g, 2 by F, G, H, we have the reciprocal relations
1 oo o AN -

FQ) =g | etfwas, (37:21)

Fl@) = f " e p(g)dg. (37-22)

Then Aby (37-1)
|7 emn@ag = [7 |7 eenrogta, + €) umn) drgd

The right-hand side is separable, and by (37-21) we obtain

H(q) = 2nG(q) F(—q). (37-3)

The physical origin has the Gaussian distribution function f(x,) = (270?)~% e~%*20",
This gives 0nF(—q) = e, (37-4)
Therefore H(q) = e ¥ G(q). (87-5)

Thus from A(£) we obtain successively H(g), G(g), g(x) by (37-21), (37-5) and (37-22).

Usually we are more interested in momenta, and wish to transform a probability
distribution of the physical momenta conjugate to £ into a probability distribution
of the geometrical momenta conjugate to 2, or vice versa. For this purpose it is neces-
sary to use wave functions, instead of distribution functions of the coordinates. They
are related as follows:

The two real distribution functions of « and p are replaced by one complex wave
function, which has reciprocal forms {(z), &(p) mathematically derivable from one
another, the probabilities in the ranges dx, dp being respectively

2 | §(2) |2 da,  2rh | (p) [2dp. (37:6)

The forms are reciprocal Fourier integrals®

@) = (2ah) f " e (p) ap, (3771)

oo

e~ paff §(z) dz. (37-72)

§(v) = i)+ |

Comparing (37-21) and (37-71), ¢ corresponds to p/fi. By (37-6), |{| is the square
root of f; and it suggests itself that if we put
q = 2p[h (87-8)

2 Dirac, Quantum Mechanics, 2nd ed., p. 103, eq. (41).
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the previous analysis for distribution functions will apply to wave functions. Then
(87-3) directly converts a distribution of geometrical momenta G(2p/#) into a dis-
tribution of physical momenta H(2p/f).

This interpretation of (37-3) proves to be correct. But, owing to the phase variable
in the wave functions, the derivation is not straightforward. We shall see in the next
section that a certain implicit convention is necessary in order to make the relation
between geometrical and physical momenta determinate.

38. The weight function

Consider the case in which the coordinate x of the particle has a Gaussian distribution
g(z) with standard deviation s. Then A(£) is a Gaussian distribution with standard
deviation s , where §2 = §24 02 (381)
For a Gaussian wave packet with standard deviation s, the distribution of momentum
is found in current wave mechanics to be

G(p) = (mh?[2s?)t g=25"%R2, (38-2)
The functions F(p), H(p) correspond similarly to o, s’; so that by (38-1),
H(p) = const. x G{p) F(—p). (38-3)

Since the exponential in F(— p) is e-27*0%%* wehave, by comparison with (37-4),q = 2p/h
as already foreseen. The result (38-3) states: :

The probability of a physical momentum p is the combined probability of o geometrical
momentum p of the particle and an opposite momentum — p of the physical origin. (38-4)

If we regard the particle and the physical origin as a two-particle system with
momenta p, p’ replaceable by an external momentum r and an internal momentum w,
the physical momentum of the particle is the internal momentum . The distribution
functions of the four momenta must satisfy

K(r)H(w) = G(p) F(p’), (38-5)

since in the two-particle transformation drdw = dpdp’. Let K(p) = 8(r), where & is
Dirac’s §-function. Then, for all states with non-zero probability, » = 0; and by {26-13),
p = —p" = @. Thus (88:5) reduces to (38-3). This result is independent of the masses
assigned to the particle and the physical origin; and (38-3) would evidently not be
consistent with any other form of K(r). Accordingly, (38-4) is equivalent to

K(p) = 8(p). (38-6)

The coordinate x conjugate to P is an unobservable geometrical coordinate, and it
is clear that we cannot have proved (38-6). We have deduced it from the current theory
of a wave packet; but that means that we have brought to light an implicit convention
of wave mechanics. Since the same convention must be applied consistently throughout
wave mechanics, we can remove the original restriction to a Gaussian distribution.
Thus (38-3) is the general formula for converting distributions of geometrical momenta
into distributions of physical momenta, and vice versa.

The convention is a consequence of the conception of wave mechanics as a system of
description and prediction, employing data which consist wholly of observables such
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as £, w, although in the greater part of the analysis an auxiliary mathematical reference
frame is used. Perhaps by a confusion of ideas, » has been left out of the equations as
physically meaningless; but it is not meaningless as a variate connecting the auxiliary
mathematical reference frame with the observables. The omission does no harm if »
is always zero; so that we must accept (38-6) as an implicit convention made in intro-
ducing the auxiliary frame, and effectively forming part of its definition. The simplest
view of the convention » = 0 is that, whenever a particle is given & momentum p a
recotl momentum — pisimparted to the physical origin. Or, stated in terms of probability
distribution, the convention K(r) = §(r) means that the probability of occurrence of
a momentum p without a recoil momentum of the origin is zero.

We change the notation F(—p) to w(p). Since F(—p) is given by (38-2) with o

n plaice of 8, w(p) - (277,@_2)_;2 e_pZ/sz’ (38‘71)
where @ = fif20. (38-72)
Then H{p)dp = const. x G(p)w(p)dp. (388)

Thus the distribution of geometrical momenia is turned into a distribution of physical
momenta by weighing the ranges dp with the ‘weight function’ w. In three dimensions
the weight function for an element dp, dp,dp, is

W(Py, Pa, P3) = (2mw?)F e Ol PR, (38:9)

The weight function is explained dynamically as a factor which makes allowance for
the recoil momentum that must be supposed to be imparted to the physical reference
frame when we assign a momentum p,, p,, P5 to an object-particle. Later the theory
of recoil will be extended to angular momenta; and it will be found to play an im-
portant part in the interpretation of the Riemann-Christoffel tensor.

The effect of w(p) is to reduce the frequency of large momenta. The value of w is
about 200m,¢?; and, since the weight function has hitherto been ignored in practical
investigations, there is scope for improving the current formulae for phenomena
involving energy transitions of order 200m,c2. It is not suggested that the formulae
can be corrected by a crude application of (38-9) which refers to ideal ¥ particles.
Attention must be paid to multiplicity factors, and the amendment is a matter for
detailed investigation for each type of phenomenon.

Certain integrals, which converge correctly when the weight function is included,
diverge when it is overlooked. As H. C. Corben has shown,® the supposed ‘infinite
transverse energy’ of an electron has arisen from this oversight. To omit w(p), or
equivalently to set o = 0, amounts to assuming an infinite universe, and introduces
into wave mechanics the same difficulties of infinitude that relativity theory en-
countered and overcame a quarter of a century ago. There are no divergent integrals in
the present theory; and we need not waste time over the difficulties that quantum
physicists create for themselves by ignoring the guidance of relativity theory. The
infinite universe has long been dead and buried; and those who insist on digging up
the corpse must expect to be haunted.

& Proc. Camb. Phil. Soc. 35, 195, 1939. Corben’s treatment requires some modification, since he does
not distinguish sufficiently between distribution functions and wave functions; and he introduces an
uncertainty of the time origin, which is illegitimate unless the time analogue is meant.
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39. The genesis of proper mass

In the uniform steady distributions hitherto considered we have taken the particles
to be at rest. Let us now consider the opposite extreme, namely a distribution in
which the geometrical momenta have unlimited uniform probability distribution;
that is to say, the number of particles in a range dp, dp,dp; is proportional to dp,dp,dp,
for all values of p,, p,, p; from —oo to +00. According to classical statistical mechanics
this is the limit which is approached as the temperature tends to infinity. We shall
therefore call it the infinite-temperature uranoid.

The corresponding distribution of physical momenta is wdp,dp,dp,, where w is
the weight function (38-9). The mean values of p3, pZ, p2 in this distribution are

P? = p} = p} = w? = #2/do> (39-1)
Since the momenta are large, the accurate energy formula E? = m?+ p?+p3+ p2
must be used. For a reason which will appear presently we consider particles without
proper mass, so that B2 = p}+ p3+p2. Hence

E? = 3w? = 3%%/402. (39-2)
By the well-known formulae of molar relativity theory,?* the pressure P and density

p of a steady uniform distribution of matter satisfy
87kP = — Ry:+A, 8mkp =3Ry%-A, (39-3)

Here R, is the radius of space curvature, and A (which it would be premature to identify
with the cosmical constant) is of the nature of a constant of integration. When the
total number of particles is fixed R, is the fixed constant 20 /N by (3-8), but A is dis-
posable. By varying A we vary P/p, or equivalently the temperature. Let

@ P=Po_ density of thermal energy

po  density of proper energy ° (39-41)
The proper density p, is equal to p— 3. Hence by (39-3),
_ 3(A—Rg?)

As dincreases from Ry 2to Ry 2, @ increases steadily from 0 to co. From the definition
of @ in (39-41) it is appropriate to adopt it as a measure of temperature in relativity
theory. In classical theory infinite temperature involves infinite energy, and the
temperature is made infinite by taking p infinite in (39-41). But in relativity theory an
increase of temperature diminishes p,; and the temperature becomes infinite by the
vanishing of p,, whilst p is still finite. Owing to the vanishing of p,, the particles in the
infinite temperature uranoid have zero proper mass—a conclusion that has been
anticipated in our calculation of E2in (39-2).

We can now compare the constants of an infinite-temperature uranoid and a zero-
temperature uranoid, distinguishing the former by an accent. By (39-3) and (39-42)
we obtain

O =, AN =%Ry? dukp =3Ry% py=0, (39-51)
0 =0, A= R;? dkp = Ry%,  po=p. (39-52)
Hence Po=p=2%p. (39-6)

2 Tolman, Relativity, Thermodynamics and Cosmology, § 139.
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Proper mass is a concealed form of energy, and a fundamental theory should show
how energy comes to be concealed in this way. We have therefore started with an
infinite-temperature uranoid in which there is no concealed energy; and we see that by
lowering the temperature a proper density p, representing concealed energy is created.
Let us examine more closely how the change of temperature from co to 0 can give a
particle a proper mass m.

The fact that the object-particle itself is reduced to rest by the lowering of the
temperature is irrelevant; for the proper massis an invariant independent of the motion
of the particle. It is the temperature of the environment that matters. The effect can
be explained roughly by Newtonian theory. The object-particle is in the inertial-
gravitational field of the rest of the universe. The greater the mass of the environment,
the greater is the strength of the field, and the greater numerically is the negative
potential energy of a particle at rest in the field. By decreasing the temperature we
decrease the energy or mass of the environment, and decrease the negative potential
energy of the object-particle. The subtracted negative energy, regarded as an added
positive energy, constitutes the proper mass of the particle in the zero-temperature
environment. Substituting Einsteinian for Newtonian theory, the foregoing treatment
provides a rigorous calculation of the addition.

Must we then vary the proper mass of a particle according to the temperature of its
surroundings? Certainly the change of gravitational potential due to modified energy
of the surroundings must, if it is sensible, be taken into account in some way. But the
correction is recognised explicitly as gravitational potential energy, and is not included
in the proper mass. The proper mass of a particle does not depend on the temperature
of its actual environment; it depends on the temperature of the environment postulated
as standard. This is the conventional distinction between gravitation and inertia
already formulated; the inertial field, which determines the proper mass, corresponds
to the standard uranoid, and the gravitational field corresponds to the deviation of
the actual environment from the standard uranoid.*

The value of A which corresponds to the zero-temperature uranoid, namely 1/EZ,
is called the cosmical constant.

The molar energy tensor of the distribution is made up of the self energy tensors of
the particles composing it. By (22-2) the self energy tensor of a particle has the form
Ap,p, Here p, is specified by a probability distribution and the mean contribution
of a particle to the energy tensor is

7, = Apﬂp,. (39-71)

For a particle in the infinite temperature uranoid this gives 7}, = Aw?, T, = 34w?
by (39-1) and (39-2), K being now denoted by p,. Summing for the N particles the total
pressure (7},) and density (7,) are

P = NAw?, p' =3NAw? (39-72)

2 This meets a possible criticism of our argument. It might be objected that, since a change of the
temperature of the universe from 0 to co would involve a violation of the conservation of energy, no
conclusion can be based on it. But we do not tamper with the actual universe; we only consider the
effect of adopting an infinite-temperature distribution instead of a zero-temperature distribution as the
standard by which gravitation is distinguished from inertia.
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In the zero-temperature uranoid the particles are all reduced to rest, so that the
momentum vector becomes (0,0, 0,m); and the total pressure and density, calculated

from (39-71), are
P=0, p=NAm2 (39-73)

Hence p/p’ = m?/3w2. But, by (39-6), p/p’ = 4. Hence m? = 4w?, and
m = 2w = fijo (39-81)

by (38-72). Also, by (39-52) and (39-73), 1/4nc R} = p=AN#2[c?% Since Ry = 20 /N,
this gives A = 1/167k%2N?, (39-82)

or in natural units, A = 1/2N2

In applying the last two formulae to practical calculation we have to remember
that the current quantum equations refer to superpositions on a rigid field, and
incorporate the multiplicity factors thereby introduced in the adopted values of the
constants. For this reason the simple theoretical constant 7 used in this section will
not agree with the practical Planck constant #. The relation will be investigated in the
next section. In order to avoid a clash of notation we shall denote the constant in the
foregoing investigation by y; so that 4 = 1/167xy2N?, and

m = Yo = 2y \N|R,. (39-9)

40. Absolute determination of m,

The particles in the foregoing analysis are ¥V, particles; for we have considered only
the triple probability distribution of coordinates and momenta. As pointed out in
§ 20, the inclusion of coordinates as well as momenta does not affect the multiplicity.
This is also shown directly in § 38. When the distribution function giving the probability
distribution of the coordinates is replaced by the wave function which gives in addition
the probability distribution of momenta, the number or degrees of freedom is increased
initially from 3 to 6; but the convention K(P) = d(P) eliminates 3 degrees of freedom,
so that the probability distribution of momentum is uniquely determined by the probability
distribution of coordinates, and vice versa.

If any other characteristics, besides p,, p,, p; and the conjugate coordinates, are
carried by the particles these must be stabilised. In particular the proper mass, cal-
culated in (39-9), is stabilised. Its computed value is a function of the temperature of
the environment; so that in a sense a measurement of the mean temperature of the
universe would be an observational determination of m. But the temperature con-
cerned is that of the standard environment which we postulate, not that of the actual
environment which we might measure; so that m is a stabilised characteristic, not an
observable.

The uncertainty of scale can be taken into account directly or replaced by space
curvature. In the cosmological investigation in §39 it has been replaced by space
curvature. Normally in wave mechanics, which is not adapted to curved space, the
proper course is to take it into account directly; so that m has a probability distribution -
arising from the uncertainty of the mass standard (comparison particle) with which it
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is measured. The particle is then a ¥;. Denoting the masses of ¥, and V] particles by
g, M,, the mass given by (39-9) is mgy; and, by (16-5), m, = 3mgy. Thus

my = 2y N/R,, my = 3y /N/R,. (40-1)

This is confirmed by the following considerations.

The relation p, = £p’ in (39-6) implies that when proper mass is released as un-
concealed energy, a quarter of the energy disappears. It is easily verified from (39-3)
that this continues to hold when only part of the proper mass is released, corresponding
to a relatively small change of ©. It should therefore apply to nuclear transformations.
The experimenter tells us that there is no energy loss in a nuclear transformation.
But this is not really a contradiction, because he does not measure the changed gravi-
tational energy of the extra-galactic nebulae—which is where the loss occurs. We can
interpret the experiment more simply. In order to justify his assertion the experi-
menter must measure the mass of the particle before and after the transmutation.
We cannot even imagine this experiment to be performed on a ¥ particle; because if
m is measured the particle is ¢pso facto not a ¥,. The introduction of a measurable mass
turns it into a ¥, particle, and the mass measured is $mg. This anticipates the loss of 1
of the energy mg in the subsequent transmutation; so that the conservation of energy
is found to be experimentally satisfied. _

It is only by imposing an unnatural constraint on matter, so as to admit only
irrotational motion, that we are able to analyse it into ¥} or V, particles. To obtain the
constants of the actual universe, we must consider ¥}, particles of mass u = %my; so

that by (40-1), o = 2y JN/Ry. (40-2)
To find the relation between y and #, consider a wave function corresponding to a

state of small velocity. The momenta p, = —vy0/ox, used in (40-2) have been assumed
to be such that E* = m?+ pf+p} -+ pj; so that for a 1}, with small velocity,

2. 2 2 2V72
B oy PAtPses vV

= 5 (40-31)

In the rigid-field treatment we introduce separate carriers for initial and transition
energy, and by (18-4) the momenta p, = —i%0/0x, are such that

JPiEpihey BV

E=m 2 5

. (40-32)

Comparing the two expressions,

v = fiJ(m/p) = 186%/,/10, (40-4)
by (18-6).

A correction is needed, because in separating the carriers of initial and transition
energy we double the number of particles. We should therefore start with 1V particles
in §39 and in (40-2), so as to obtain the N particles of the actual universe. Keeping
R, fixed and equal to the radius of the actual uranoid, the change N — {N gives o —0",/2,
and all quantum-specified lengths are thereby multiplied by /2. Correspondingly,
quantum-specified angular momenta, being of dimensions (length)=2, are divided
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by 2, so that y - %y. We must therefore substitute £V, 4y for N, v in §39 and (40-2).
The latter formula becomes

vizl (40-5)

7J(BN)
2 R,

3

5

Alternatively we can keep y, N and R, the same as in the actual uranoid. Then the

value of m given by (40-2) refers to a uranoid with N extracules of mass #, to which are

added N intracules of zero rest mass. The doubling of the number of particles divides

o by 4/2; and since mass has dimensions (length)=3, it multiplies # by 2./2. We have

therefore to divide the result in (40-2) by 2./2, in order to obtain the mass in a uranoid
with 1N extracules and {1V intracules. This gives (40-5).

136 37 J(4N)
By (40-4) and (40-5 = SRS 40-6
y (40-4) and (40-5) 01 R (40-6)
4
so that my = z;i—«é’ﬂ (40-7)
0

It remains to determine the f-factor required to reduce (40-5) from the theoretical to
the observational system. We have used the ratio a/u = 1362/10, which applies to
standard particles in system A or hydrocules in system B. The latter is the definitive
application, since it takes account of eleetrioal properties. Thus the radius referred to
n (40-6) and (40:7) is (R,)p, which is f¥(R,),; and R, must be replaced by 4R, in
the formulae, in order to reduce to the obqervatlona,l system. No other change is
required. The mass m, determined by the formula is that of the hydrocule in system B;
but this is the same as that of the standard particle in system A, and, since it is the
standard particles that are directly connected with the molar density or mass, the
result is an absolute determination of the mass of the hydrogen atom in the obser-
vational system 4. The formulae, including f-factors, are accordingly

3 B4 /(£ N) 136 3 B /(AN
— S NS M = __Nﬁ

Mo =73 ¢cRy, T 104 R, (40-8)

the velocity of light ¢ being re-inserted so as to remove the restriction on the units.

This is the central formula of unified theory.® Since %/mc is known with great
accuracy (§32), (40-8) gives an accurate determination of B /,/N and hence of ¢. This
replaces the rough determinations of o from the range of nuclear forces and the recession
of the galaxies in §5. The calculation of natural constants with this formula and
comparison with observation will be treated later.

In the next three sections the same formula will be derived by an entirely different
method.

41. Exclusion

The earliest version of the exclusion principle refers to the discrete eigenstates of an
atom, and asserts that there cannot be more than one particle in a given eigenstate.

@ My earlier calculation (Protons and Electrons, equation (14:71)) was in error by a factor (3)}. The
correction was announced tentatively by Eddmgton and Thaxton in Physica, 7, 122, 1940, The factor g%
is a more recent refinement.

EFT 6
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We are not concerned with this form of the principle at present, because it is a truism
for the hydrogen atom which has only one internal particle. But there is a more general
version applicable to a continuum of states, which (as applied to hydrogen) can be
expressed as follows:

If the 6-space obtained by taking x, ¥, 2, Py, Pa P3 &5 coordinates is divided into cells
of volume h® (h = 27h), then in o steady state the maximum number of particles per cell is
two electrons and two protons. (41-11)

By applying the two-particle transformation, and using the invariant relations
(26-32) and (26-34), we derive a similar exclusion principle for extracules and intracules.
The wording is modified because the variates £, 4, {, wy, @,, w, of the intracule form a
distinet (electrical) 6-space. The exclusion principle is:

Ina steady state the maximum number of particles is two extracules per cell h® of
xp-space and two intracules per cell h® of Ew-space. (41-12)

This divides the principle into an electrical exclusion principle applying to intra-
cules and a mechanical exclusion principle applying to extracules. The theoretical basis
of the exclusion principle will be found at a later stage of the development of the theory.
Meanwhile we accept it as a part of quantum theory which it is our task to unify with
the rest of physies. Such experimental verification as exists has hitherto been confined
to the electrical exclusion principle. Unless the mechanical principle is true also, the
mixed form (41-11) cannot be true; but to use this as an argument for the mechanical
principle would beg the question whether the current belief in (41-11) is well founded.
The following investigations will lead to observational confirmation of the mechanical
exclusion principle, and so redress the balance.

We are going to show that the mechanical exclusion principle leads to the formula
(40-8) for the masses of particles that we have found by gravitational theory. Thus
we can replace our former gravitating (non-excluding) particles by excluding (non-
gravitating) particles. Ezclusion is a wave mechanical substitute for grovitation. 1t is a
wider concept, since it has both a mechanical and electrical application; so that we
should perhaps rather say that gravitation (including inertia), i.e. curvature of space,
is the form in which molar theory represents the mechanical part of exclusion. But it
is also a narrower concept, since the exclusion principle postulates a steady state. This
is in accordance with our general conclusion (§6) that the methods of molar and of
microscopic theory have a very narrow field of overlap. -

The application of the exclusion principle to extracules is parallel to the apphca’mon
to intracules in the theory of super-dense (white-dwarf) matter; so that the first few
steps are familiar. Super-dense matter is treated in § 44.

Consider a unit volume of three-dimensional space, so that the cell of 6-space
corresponds to a cell dp,dp,dp; = h* of momentum space. Let # be the number of
extracules perunit volume of three-dimensional space; and let 41y be their mass-constant,
50 that according to the classical formula the kinetic energy of an extracule is

B = p?2p, (P} = pi+pi+p3).

For a zero-temperature distribution the energy is a minimum. We have therefore
to distribute p,, Py, ps 80 that X E, and therefore 2p?is a minimum subject to the density
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not exceeding two particles per cell. The minimum is given by a distribution in
momentum space which fills uniformly a sphere of radius p = p determined by

smp® = k3, (41-21)
. s 2 (3%)?* h?
and the ‘top energy’ is C=_—={-—-) —. 41-22
p energy 20~ \57) 2 (41-22)
= 3 (3n\t K2
i = 3% = (= .
Also the mean energy is B =3¢ 5 ( 87r) T (41-23)

This is a well-known formula in the theory of white-dwarf matter. Applying it to the
1N extracules of the zero-temperature uranoid, we have n = 3N/272R3. Hence, setting

sy = po(3N)F (41-3)

3N [ b \?
. = (. 41
(41-22) becomes G iz, (27TR0) (41-41)
This may also be written as © 2, € = 3wd, (41-42)

where w is the weight constant (38:72), which is equal to %/20 or /N |27 R,.

Consider a top particle. It is one of a distribution of particles at zero temperature,
and therefore from the ordinary point of view € is its rest mass. € is here exhibited as
exclusion energy, the particle being boosted up to this energy level by the full occupation
of all states of lower energy. Butin any case the rest mass is a concealed form of energy,
and it is the same energy that we formerly accounted for gravitationally. According
to one picture the particles of the uranoid give an object-particle its rest energy by
determining an extraordinary fluctuation of scale, which gives curvature to space-
and consequently provides an inertial-gravitational field; according to the other
picture they compete for the lowest energy levels, so that (on the average) an object-
particle has a high energy although the temperature is zero. Ultimately the two modes"._
of interaction must be equivalent. E

We shall distinguish this exclusion treatment of rest mass as ‘sub-threshold theory’.
As soon as we pass to ordinary quantum mechanics, the rest mass is accepted as an
intrinsic attribute of the particle. In particular the original mass-constant g, is peculiar
to sub-threshold theory, and is replaced in quantum mechanics by a mass-constant
equal to €.2 It will be seen that, although the calculations are precisely similar, there
is & difference in the practical interpretation of the present result for extracules and the
familiar result for intracules in white-dwarf matter, because the plane of ordinary
experience is the top level of the former and the bottom level of the latter.

42. The negative energy levels

Regarding the top level € as zero level, the particles of the zero-temperature uranoid
completely fill a series of negative energy states existing below the zero level. In
principle this agrees with a conception first introduced by Dirac; but it must be
emphasised that there are important differences. Here the number of negative energy

% Subject to such adjustment (to be considered later) as may be necessary to allow for the fact that not
all the particles have the top energy.

6-2
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states, though large, is finite. The particles filling them are not invented ad hoc, but
are the rest of the particles of the universe distributed in the way in which the elemen-
tary quantum equations postulate them to be, namely so as not to interfere with. the
behaviour of the object-system that the equations describe. Since the particles are
extracules, the theory is symmetrical between positive and negative charge; and the
difficulty of the infinite negative charge, which occurs in Dirac’s theory, does not arise.
Presumably negatrons as well as positrons can exist.

This picture refers to sub-threshold theory; positrons and negatrons belong to super-
threshold theory and, although related to the vacant states or ‘holes’ in the sub-
threshold picture, are not directly identified with them. Similarly electrons and
protons, which are super-threshold particles, are not directly identified with particles
in the sub-threshold picture.

To form a super-threshold object-particle, we must excite a top particle to a higher
energy. Then the net addition to the uranoid is a particle at a level above € together
with a hole at the level €. This combination can be regarded as a bi-particle carrying
the excitation energy. We arrive at once at the theory of the mass of a proton or electron
in§ 22, in the form given at the end of that section where a comparison hole is used. The
bi-particle of multiplicity 136 carries an unspecialised element of the excitation energy
tensor added to the zero-temperature uranoid; and this is divided into two parts, one
part being stabilised as a ¥, particle (proton or electron) and the other as a V] hole.
The hole at the level € is accordingly the comparison hole.

A super-threshold positron or negatron is formed similarly by taking a hole at the
level € and exciting it to a lower level. The net addition is a bi-particle consisting of a
hole at the lower level and a comparison particle plugging the original hole. The
calculation of the masses is precisely similar; so that the masses of the positron and
negatron are equal to those of the electron and proton.

The connection between the particles in sub-threshold theory and those previously
studied is therefore:

(1) The top level particles of exclusion theory are the comparison particles of our
previous theory.

(2) The stabilisation which yields ¥}, particles is not introduced until energy is
added to the uranoid in order to form super-threshold object-systems. Thus the extra-
cules in § 41 are unspecialised elements of energy tensor with multiplicity 136.

Both (1) and (2) identify € with m,.

We have reached the conception of an object-system perched on a firm platform
provided by fully packed energy levels; so that it starts with a threshold energy highly
boosted up by exclusion. It is essential to employ top particles in forming object-
systems; otherwise holes are left in the sub-structure, and it does not constitute the
rigid environment which wave mechanics postulates. By (41:23) the top particles have
5 of the mean energy K. The multiplier § may be described as a selection factor. By
attributing the top mass m, = € to every particle we magnify the density of the
uranoid by $ in passing from sub-threshold to super-threshold theory. In order that
R, may be unchanged the increased density must be coupled with a constant of gravita-
tion reduced in the ratio 2. The constant of gravitation applicable to sub-threshold

theory is accordingly

Ky = 2K. (42-1)
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The name ‘constant of gravitation’ is inappropriate when gravitation is replaced by
exclusion; but the interpretation is given by the relation 87«%2 = 1, and we have »

72 = 32, (42-2)
Thus #, is the constant to be used in sub-threshold theory, % being the ordinary super-
threshold constant.

A slightly different derivation of (42-2) is obtained by considering that # determines
the size of a unit cell in exclusion theory. Thus in the analysis of a unit volume in §41,
when 7, is changed to #, the volume dp,dp,dp, of the unit cell of momentum space is
changed in the ratio #3/#%; so that corresponding values of p are changed in the ratio
#i/fi; and those of E in the ratio #2/%#2. This increase changes & to €. It therefore corre-
sponds to the change of total energy introduced by the selection of top particles.

43. Determination of m, by exclusion theory

Let us compare uranoids containing different numbers of particles. We shall make
the comparison from the plane of ordinary experience, which is the level &; so that the
uranoids will be viewed from above. That is to say, we take a small object-system to
which the usual microscopic constants mg, M, u, %, o, w apply, and vary the number -
3N of negative energy levels beneath the threshold. The cosmological constant B,
will vary as NV*; but otherwise the super-threshold system will be unaffected. Since
my = €, € will be unchanged. The constant p, will be changed, but that does not affect
the super-threshold system.

By (41-42), g, is unchanged. For further progress it is necessary to determine u,/€;
and, since this ratio is independent of N, it can be found once for all by taking any
convenient value of N. The case that can be solved easily is JN = 2. But we have
previously assumed that N is large, and for small values our formulae become ragged.
This will not affect the order of magnitude; but to obtain accurate formulae it is
necessary to examine more closely how the negative energy levels are distributed.

Owing to the symmetry the eigenstates will correspond to the surface harmonics of
thehypersphere of space.? By a well-known theorem each single eigenstate in a complete
set corresponds to a unit cell. Owing to the symmetry, harmonics of the same order
coalesce into a multiple state; so that the cells are arranged in a series of levels, the
fth level from the bottom corresponding to harmonics of order s = k—1. For surface
harmonics on a hypersphere there are (s + 1)? independent harmonies of order s. Thus
the kth level contains £? cells or 2k? extracules. The bottom level, corresponding to a
surface harmonic of zero order, consists of one cell containing two extracules.

‘We call k the quantum number of the level. When £ is large, the number of extracules
up to the kth level is £4%; and the top quantum number { is given by £ = IN. Thus

f= (3N). (43-1)
Hence by (41-3) My = . (43-2)
The top quantum number of the universe is 2-607 x 1026, and the particles in the top-
most complete level would form a planet of mass intermediate between Neptune and
Saturn,

2 The eigenstates are determined by the same conditions as in a symmetrical field of force in atomic
physics, except that there is one more dimension. In both cases there is symmetrical degeneracy, due ta
the impossibility of defining any distinctive orientation of a set of rectangular axes.
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The formulae (41-3) and (43-1) are not valid for small numbers; but the raggedness
is eliminated in the derived formula (43-2), which remains true down to f = 1. That is
to say, the mechanical characteristics &, p of the level are smoothly related to the quan-
tum number k, although their relation to the maximum occupation becomes irregular
at low levels. When the curvature representation is dropped, scale and phase variates
are used instead; and in an eigenstate of the system the scale must reduce to an eigen-
scale. In the uranoid the quantum levels are the (multiple) eigenstates of the particles;
each represents a uniform symmetrical distribution and the only difference between the
levels is a difference of scale.2 By (24-3) the eigenvalues of the scale are proportional to
the integers. The lowest scale, corresponding to the integer 1, gives the bottom level
in the uranoid ; and the eigenscale of any other levelis then proportional to its quantum
number k. Any mechanical characteristic varies as a fixed power of the scale depending
on its dimension-index. Thus the simple relations of the mechanical characteristics
to k, established for high quantum number, remain valid down to £ = 1.

For the kth level in a uranoid with top quantum number ¥, we now have the exact

formulae E/G =k, plp =k, (43-31)

and the number of extracules in the level is 2k2. Comparing uranoids with the same
microscopic constants but different f, the exact formulae are

€ = const., g =const., gy =/t (43-32)
and by (41-41), 20, & = B, /R, )2, (43-4)

remembering that a different constant 7%, is to be used in sub-threshold theory.

To justify the treatment in wave mechanics, a quantum particle has been defined
as an addition to a rigid environment. 1t is a feature of the exclusion representation
that this condition is automatically fulfilled by taking the quantum particle to be a
top particle, which can be inserted or removed without disturbing the fully packed
energy levels beneath. Thus the replacement of gravitating by excluding particles
replaces the gravitational field by an exclusion field which, unlike the gravitational
field, is automatically rigid. This is a merit, and also a limitation; for it prevents the
adaptation of exclusion treatment to the majority of molar problems which involve
a flexible field.

The rigidity of the exclusion field is not exact, though normally it is an extremely
high approximation. When N is not large, we must distinguish between vertical and
lateral exclusion. The part of € due to lateral exclusion, i.e. due to the 2f2— 1 particles
at the same level as the object-particle, is negligible in the actual universe; but it
becomes relatively more important as ¥ decreases and for f = 1 the exclusion is wholly
lateral. The uranoid then consists of two particles which mutually exclude one another
from the zero state & = 0. Kither particle is a top particle; but it is not in a rigid
environment, since its removal would allow the other particle to drop to # = 0. When
treated as a quantum particle superposed on a rigid environment, its energy must be
taken to he € = C+ p?/2u,, where C is the additional energy of the system due to its
presence but not included in its own exclusion energy H2?/2p,. In this simple case ¢
is the exclusion energy p2/2u, of the other particle; so that € = 2C.

# The surface harmonics were introduced only for the purpose of calculating the multiplicity of the
uniform distribution which, in symmetrically degenerate conditions, replaces them.
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We have hitherto included only kinetic energy in E. Including rest energy, the
classical formula is B = py+ p?/2p,- Since this has to reduce to € = C -+ p?/2, at the
one-quantum level, we have C' = g,. Thus in the uranoid f = 1,

€ = 20y = 21y, (43-5)
But & and g, are independent of £, so that € = 2, in any uranoid. Thus (43-4) becomes
€ = By /Ry)? = FN(fiy|Ry)?, (43-6)

the latter form being valid in the actual universe where N is very large. By (42-2)
this becomes
& — m2 3 374N

oo S 437
T35 R’ (437)

which agrees with our previous determination of m, in (40-7). The factor /%, reducing
the value of m, to the observational system, should be inserted in practical caleulation
as before.

It will be noticed that the classical hamiltonian ¥ = m + p?/2m, which has hitherto
been used only for small values of p/m, is in this investigation applied to extremely
large values of p/m. It will be shown in § 45 that m + p?/2m is the correct hamiltonian
for the standing waves which represent a system in statistical equilibrium, just as
(m?+ p2)t is the correct hamiltonian for progressive waves. The common description
of the hamiltonian m + p?/2m as ‘non-relativistic’ is absurd; the argument which shows
that (m?+ p?)? is the correct form of hamiltonian for progressive waves because they
can be eliminated by a Lorentz transformation of the coordinate frame, equally shows
that it is not the correct form of hamiltonian for standing waves because they cannot
be eliminated by a Lorentz transformation of the coordinate frame. There is therefore
no reason to discredit the hamiltonian m + p?/2m in advance; and the agreement of
the derived formula (43-7) with the earlier result obtained by relativity theory (which,
we shall find, is verified experimentally to about 1 part in 1000) is a very stringent
test of its correctness.

44. Super-dense matter

The mean density of the companion of Sirius is about 50,000 g.cm.=3; and other
white-dwarf stars with still higher density are known. At such derisities the electrons
and protons (or nuclei) are in a state of continuous collision; and the problem of
separating carriers of electric/all and of mechanical energy is radically different from the
‘separation of intracules and extracules in isolated two-particle systems. We shall
investigate super-dense matter which is in a steady state, and therefore in statistical
equilibrium.

Consider first the molar aspect. The deviation of any physical characteristic from

perfect uniformity can be represented by a superposition of waves. There are two wave
systems to be considered:

(#) Mechanical waves, i.e. sound waves.

(b) Electrical waves, i.e. changes of electric polarisation with consequent currents
and magnetic effects.

To a first approximation the mechanical and electrical waves are independent; but,
if the amplitudes are not treated as infinitesimal, there are cross-terms which will
ultimately bring about an equilibrium distribution of energy between them.
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At non-zero temperature there is a field of radiation, determined by Planck’s law,
which induces waves of system (b) in the material; these in turn maintain waves of
system (a) by the above-mentioned slow transfer of energy. But even at zero tempera-
ture the wave systems do not vanish, since perfect uniformity is highly improbable
statistically. Accordingly at zero temperature we have waves representing fluctuations
that result from the law of chance. Itis the energy and pressure of these residual waves
that we principally wish to determine.?

Turning to the microscopic aspect, we consider first the electrical waves. The
polarisation can be represented as a distribution of a large number of doublets. We
denote the vector moment of a doublet by ef,, ef,, e£,. Considering the n doublets in
a unit volume, we count the number with §,, &,, & in various ranges, and so arrive at
a distribution function of the ‘electrical coordinates’ &;, &,, &. In like manner the
sound waves are represented microscopically by displacements x,, x,, x; of a large
number of uncharged particles, and a distribution function of the ‘mechanical co-
ordinates’ x,, x,, X5 can be defined.

As usual the frequency distribution of variates in an assemblage is described as the
probability distribution of the variates of a particle which is an unidentified member
of the assemblage. Thus the state of the material is described by the probability
distributions of the coordinates £, &,, &, of an unidentified doublet and of the co-
ordinates x;, X,, x; of an unidentified neutral particle.

It would not be possible to represent a simple sound wave in this summary way;
because the most significant feature is then the correlation of displacement of those
particles which are in the same part of the wave. But the method that we are developing
is bound up with the theory of statistical equilibrium; and there is no intention of
extending it to non-equilibrium phenomena. Inequilibrium conditions the fluctuations
are of a random character. By Fourier analysis we can represent them by systems of
'mechanical and electrical waves; but the analysis would be misleading if it causes us
to think that correlations of displacement, such as those exhibited in a simple harmonic
wave, are involved. '

Returning to the molar aspect, there is an alternative treatment which claims
attention. If we think of the material as a superposition of positively charged and
negatively charged matter, we may consider instead of (a) and (b):

(@'} Waves of displacement of positively charged matter.

(b') Waves of displacement of negatively charged matter.

This is equivalent, since electrical waves are given by oscillations of (a’) and (") in
opposite phase, and mechanical waves by oscillations in the same phase. By the same
procedure as before, the state of the material is described microscopically by a prob-
ability distribution of the displacement x,, x,, #; of an unidentified positively charged
particle, and a probability distribution of the displacement 3, x;, #; of an unidentified
negatively charged particle.

Whereas the wave systems (@) and (b) are nearly independent, there is very intense
interaction between (a') and (b')—so intense that in molar physics we should never
think of investigating them separately. Microscopic physics shows the mechanism of

a The results will apply to a ‘black dwarf’, i.e. a super-dense star with zero temperature. In practical
application to white dwarfs, the correction due to the internal temperature of the star is separately
investigated.
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this interaction. Whenever a proton and an electron collide energy is transferred from
(") to (b') or vice versa. In a time in which each electron has had one collision a con-
giderable part of the whole energy has passed between the two systems; so that the
time of relaxation is of the order of magnitude of the time between collision. In super-
dense matter the particles are in continuous collision, and the separate wave systems
{¢') and (b') can scarcely be said to exist even momentarily.

The eigenstates must therefore conform to the separation of (a) and (b), not (')
and (b’). If the lifetime of a state is long compared with the natural period of its eigen-
function, the state is sharp. As the lifetime decreases the state becomes broadened; and
the states of the wave systems (o), (") would be broadened out of existence. Broadening
of the states means that the energy of the system is not wholly the energy of the particles
in the states, but is partly energy of the transitions going on between the states.
Practical procedure turns on the fact that the energies of eigenstates are comparatively
easy to calculate; whereas the calculation of interstate energy is a difficult problem
scarcely to be attempted unless it occurs as a small correction. It is therefore necessary
to employ eigenstates between which transitions are known to be rare, so as to ensure
that the incalculable interstate energy is negligible; to employ eigenstates subject to
frequent transitions misses the point of the method.

It is necessary to emphasise the inadmissibility of analysis based on the separation
of (o') and ('), because it is the initial fallacy in recent investigations of white-dwarf
matter; and the resulting pressure formula (the Stoner-Anderson formula) continues
to work devastation in astronomy. These investigations take for eigenfunctions a set
of Dirac wave functions which represent electrons moving freely under no forces with
constant velocity and constant plane of spin. It would be difficult to imagine a more
unsuitable choice for the problem attacked. Having chosen eigenstates between which
transitions are excessively frequent, the investigator imposes on himself the task of
calculating the energy of the transition circulation which has to be added to that of
the eigenstates. But this is not attempted and the investigation proves nothing.

Wave analysis is applied in the usual way to the probability distributions of &,
and x,; and the conjugate momenta w,, p, are introduced. We obtain in this way wave
functions in £-space and x-space. (The ‘waves’ of wave mechanics must not be con-
fused with the original sound waves and electrical waves.) It is to these that the
exclusion principle applies, namely, that there are not more than two particles per
cell A? of {w-space and not more than two particles per cell 23 of xp-space.

It is impossible to grasp all at once the implications of this new approach to wave
mechanics. We must be content to connect it with the other lines of development by
gradual stages. One connection has already been traced: exclusion between the un-
charged particles (extracules) in xp-space is a substitute for inertia and gravitation.
A sub-threshold investigation was needed to show the equivalence; that is to say, the
wave system (a) was taken to include not only the sound waves but the energy con-
cealed in the rest mass of the material. In ordinary (super-threshold) theory the main
part of the xp-exclusion is concealed in the rest masses of the extracules; so that
normally we have only to deal with the {w-exclusion.?

@ The replacement of exclusion interaction by rest mass refers to the uranoidal distribution. In com-
pressing the uranoid particles to white-dwarf density, further exclusion energy is added which corre-
sponds to the residual sound waves at zero temperature. This is too small to have any importance; but
it can be calculated in the same way as the exclusion energy corresponding to the electric waves.
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Another important connection is obtained by considering matter of very low density.
For simplicity we postulate a temperature sufficient to ionise the matter. As the density
decreages, collisions between positive and negative particles become infrequent; and
ultimately the alternative separation (a’), (b') becomes admissible. Thus at low
density there will be a transformation connecting the x, £ variates with the =z, 2’
variates, which must satisfy the condition (26-22) that the two representations yield
the same energy tensor. We take this to be the two-particle transformation (26-12),
and so make a junction with our previous theory.

It is now possible to make clear some logical points. We began with a general repre-
sentation of polarisation by doublets, but did not specify the particular distribution of
doublets in terms of ordinary constants of the material. This was justified, because
super-dense matter only exists in the interior of certain stars, and its constants are by
no means ‘ordinary’. Ifit is asked whether the doublet is formed by joining a proton to
the nearest electron or to one taken at random from the whole volume considered, we
must reply that there are no protons and electrons—or, at least, they are so kept in
transition that the question has no meaning. The specialisation, for application to
particular physical systems, is therefore held over until we consider the limiting case
of very diffuse matter; it then takes the form of the condition that the variates satisfy |
the two-particle transformation, which provides linkage with our previous theory and
hence with observation. The two-particle transformation must not be applied except
to diffuse matter, because (26-22) is not satisfied if one of the representations involves
energy of transition circulation. The interaction between the intracules (doublets) is
here represented entirely by exclusion. As the density decreases, the exclusion effect
decreases; and when exclusion becomes negligible we arrive at an assemblage of non-
interacting intracules—which is the distribution studied in our earlier theory of
intracules.

The last step—the two-particle transformation—assumes the material to be
hydrogen. For other elements a more complex transformation would be required,
which cannot be treated here. We shall therefore limit the theoretical discussion to
super-dense hydrogen. The junction with ordinary theory supplies the important
information that the masses of the x and £ particles are the masses i, ¢ of the hydrogen
extracule and intracule.

45. The degeneracy pressure

Applying the general formula (41:23) to the intracules in super-dense hydrogen the
mean exclusion energy per intracule is
= 3(30\th?
where ¢ is the particle density of the intracules.
For astronomical purposes the pressure is required. This may be calculated in-
dependently of the energy as follows. By (23-1) the mean contribution of each intracule
in the normalisation volume ¥} is AT}, = p2/V,x; and the total contribution of the ¥,

intraculesis P = op?/u. By the spherical form of the momentum distribution p? = Lp?;

hence by (41-21)

P = Kot (K - %(%)”;) (45-2)
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This is the ‘degeneracy pressure’ of white-dwarf matter, i.e. the pressure at zero
temperature.
R R

=_+_

Since — R
s m, My

the pressure can be (rather artificially) split into two parts apparently arising from
the electrons and protons respectively, the contributions being inversely proportional
to their masses. It is usually assumed that this can be extended to all nuclei or ions.
Since the contributions of the positive particles are negligible, (45-2) will then apply
to any kind of matter, o being the particle density of the free electrons. The agsumption
is probably correct, but it lacks rigorous proof.

There are three white-dwarf stars for which sufficient astronomical data are available.
These afford a striking general confirmation of (45-2),2 though the test is not accurate
enough to settle fine points of theory. White-dwarf matter was first investigated by
R. H. Fowler, to whom the result (45-2) is due.P

The mechanical waves (sound waves) will contribute an additional degeneracy
pressure K, 0%, where K, is the constant obtained by substituting a for # in K. The
additional pressure is of no practical importance.

The wave functions of the steady states are standing waves. It is not permissible to
replace the standing wave by two progressive waves in opposite directions, because
that would be a representation of dispersing material; it ignores the collisions which
continually reverse the direction of motion and so prevent dispersal. Similarly there
are no waves representing circulatory motion, such as occur in an isolated atom;
because the continuous collision makes the lifetime of an integral of angular momen-
tum vanishingly small. In a standing wave p%, p2, p3 reduce to eigenvalues; but the
momenta p,, Py, Py are not eigenvalues and their expectation values are zero. This
means that the investigation deals with energy tensors, not momentum vectors, and
it therefore comes within scale-free physics.

Since the exclusion energy-density and pressure are scale-free characteristics, there
is no danger of the formulae breaking down for large values of p%. In particular the
proportionality of P and E to of must hold for all values of o-.¢ We can, if we like, limit
the foregoing discussion to relatively small values of p? (for which its validity is un-
questioned), and then extend the results to large values by a scale transformation.
It is instructive to follow up the details of the transformation.

Our analysis separates the electrical (£, @) system from the mechanical (x, »)
system, applying a similar exclusion principle to each; so that we can apply the scale
transformation to either system independently. The masses of the particles have been
found by sub-threshold analysis to be concealed exclusion energy of the mechanical
system. We wish to examine changes of the electrical exclusion of particles with fixed
proper masses, and must therefore apply the scale transformation to the electrical
system only. But we shall begin by applying it universally. In natural units P has

a In the astronomical calculation the only unknown likely to affect the result is the percentage of
hydrogen in the whole mass; and the formula is therefore generally used to give an observational deter-
mination of the abundance of hydrogen in the star. The hydrogen effect is not large; and it is a consider-
able success for the theory that there is a possible hydrogen abundance for each of the stars. Details
are given in Monthly Notices, R.4.8. 99, 595, 1939.

b Monthly Notices, R.A.8. 87, 114, 1926,
¢ P, K and o are to be measured in Galilean coordinates at the point considered.
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the dimensions p, and o the dimensions p*; so that, in order to satisfy (45-2), K must
have the dimensions p~—*. This agrees with the form A2y of K, since, by (29:2), p is
multiplied by £* when the density is multiplied by f. In the actual application of
(45-2) K is constant, because the scale transformation is not extended to the mass p.

Keeping p constant we can give K the right dimensions by taking & to vary as p~1%.
Then if p is multiplied by £, as in the transformation from system B to system 4,
h is multiplied by g7=. By (30-5) this change is eliminated in the constant b’ = f-7=
defined by molar control in system A. The definition by molar control depends on the
union of mechanics and electrodynamics in classical theory, which makes it necessary
to apply the same scale to both; the quantum definition depends on the separation
of microscopic mechanics and electrodynamics by the introduction of extracules and
intracules. Thus molar control gives the constant A’, which is the unchanged quantity
when the scale transformation (B — 4)is applied to both systems; and quantum theory
gives the constant k, which is the unchanged quantity when it is applied to the electrical
system separately. This confirms the formula (30-5).

The question was raised at the end of § 43 whether it is permissible to use

E = m+p?2m

as the hamiltonian for standing waves, when p? is not small. This is now answered in
the affirmative. It occurs, not as an approximation to (m?+ p?)t, which on account of
its Lorentz invariance is obviously ruled out, but as an exact condition applying to the
energy tensor. It may be written AT,* = — 34T, or AT* = — AT'; that is to say,
Ap = 3AP = — Ap,, p, being the proper density.

Reference has already been made to the erroneous (Stoner-Anderson) formula, which
is currently used. In opposing my criticism of it, Dirac, Peierls and Pryce say :

‘Eddington raises objections on similar grounds against the customary treatment
of the equation of state of a degenerate gas. Here the situation is considerably simpler
because one neglects the interaction between the particles altogether.”

That is why I reject altogether the customary treatment.

& Proc. Camb. Phil. Soc. 38, 199, 1942. The italics are mine.



Chapter V

THE PLANOID
46. Uranoid and planoid

Having established the formulae (3-8) and (40-7) which connect the cosmological
constants NV, By with the microscopic constants, we have no further occasion to treat
object-systems on a cosmical scale. Being free now to confine attention to systems
whose extension is very small compared with E, we are able to introduce an important
simplification.

When provision has been made for representing the inertial-gravitational field
otherwise than by curvature, so that the object-system and its environment are in flat
space, it is natural to adopt as standard environment a uniform distribution of particles
in flat space. The distribution may be supposed to continue indefinitely so that it is
represented by infinite plane wave functions; but the ‘environment” of the small
object-system is limited to a sphere of radius R, about the object-system as centre
containing N, particles, B, and N, being chosen so as to give the correct uncertainty
constant . We call this form of standard environment a planoid.

The planoid is not & mathematical transformation of the uranoid, but is a physically
distinet distribution. When the scale and phase dimension is used instead of curvature,
the uranoid is projected orthogonally into a flat space (§6), and its density in the flat
space is proportional to (1—#2%/R3)~*; in the planoid this is replaced by a density in-
dependent of . Regarded as representations of the actual universe, there is nothing to
choose between the uranoid and planoid; both differ widely from the actual expanding
universe. In using either of them we take advantage of the relativistic principle that
extensive changes of the remote environment can be made without affecting the
object-system (§7). Local phenomena involve only its integrated effect, which is
contained in the inertial-gravitational or metrical potentials g,,,.

We have to give the planoid a spherical boundary. The boundary would have created
difficulty at an earlier stage; but we do not mind introducing a boundary when the
theory has got far enough to settle the boundary conditions. Now that the object-
system is limited to a small region at the centre, the effect is only to introduce an
extraordinary fluctuation by limiting the number of particles to IN,. Whatever wave
mechanical substitute for gravitation is employed is a substitute for the extraordinary
fluctuation, and therefore implicitly takes account of the boundary condition.

‘We consider then, as alternative environments for a small object-system,

(@) A zero-temperature uranoid with radius of curvature R, containing N particles.

(b) A zero-temperature planoid of radius R, containing N, particles.

Unless otherwise stated, it is understood that the same units of mass and length are
used in (@) and (b), so that all quantum-specified lengths and masses are the same.
This requires that o shall be the same. For uniform distribution over a sphere of
radius B,, the standard deviation of a coordinate is (1 R%)?, and for a coordinate of the
centroid is (L R%/N,)}; we have therefore

R? , B3

5—N—1 = g = 4:—1—\7. (46'1)
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The fundamental formula for m, is slightly simplified by using planoidal constants.
By (40-7) and (46-1), v 34 N,
mo=1 (46-2)
The most illuminating comparison with the uranoid is obtained by writing (40-7) in
the form

where #, is the sub-threshold constant (42-2).

Usually it is unnecessary to fix &, and R, separately, since only the combination
1/4/V; is required. W e shall, however, introduce later a special planoid with fixed
constants R,, N;, which is useful for certain fundamental investigations.

47. Interchange of extracules

We denote the mean value of a quantity averaged over the volume of the plan01d
by {...]. If r is the distance from the centre,

[#~?] = 3R%, [r]=3R7L (47-1)

These means are not sensibly altered if 7 is measured from an object-particle reasonably
near (e.g. within a billion miles of) the centre. Then, by (46-2),

= [%_f] I, (47-21)

“ule -2 E )] w2

the summation being over the 3, extracules of the planoid. The fluctuation of the
summed quantity is relatively insignificant, and we can drop the [...]. We have then

mg = %Espg (ps = %%/75) (473)

Introducing the mass-constant u = m,/136 of an intracule, (47-3) gives
My = 138my = X %, (47-4)

where m, is the rest mass of a V; extracule by (16-5). We obtain a physical interpretation
of p, by supposing that the V; object-particle has a half-quantum of angular momentum
about the sth planoid extracule; the corresponding linear momentum is }%/r, = p,.
We shall now take the planoid extracules to be V; particles, so that the object-
particle to which (47-4) refers is one of an assemblage of similar particles. Rigid-field
theory can then be applied. Let the object-V; make a transition to a state of momentum

Por P TS NTEY ISy — o (4 )2 (@7:51)
by (18-4),since the transition energyis independent of the multiplicity. Hence by (47-4),
By = (pi+p3+ ... +piy, + 0o+ Py +02) 2 (47-62)

This opens up a far-reaching conception. Initial energy is eliminated, and the whole
energy is exhibited in the form of transition energy of a system with 1N, + 3 degrees
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of freedom. The 1N, + 3 momenta are formally similar; but only the last three are actual
observables. Ideally the others are observables depending on the individual distances
ry of the planoid extracules; but they are treated collectively and replaced by a
stabilised average. Not even the average is observed, the planoid being a postulated
standard environment.

We recognise that the initial or rest energy m, is a concealed energy. In (47-52) it is
dragged out of concealment, and exhibited in a comparable form with unconcealed
energy. It is seen to arise from the V; extracule having a half-quantum of angular
momentum about every other extracule in the planoidal assemblage. Since the
particle is at rest, the momentum is extra-spatial, and the half-quantum represents
interchange circulation. The half-quantum value agrees with §33, because here the
interchange is between the object-particle and its environment; and the doubling,
which gives a whole quantum of interchange angular momentum between two parts of
an object-system (as in the case of the Coulomb energy) does not apply.

Since the non-observable momenta are treated collectively, we can substitute for
their separate momenta p, a resultant '

P = J(2p2). (47-61)
Then my = r?/2u4, and Ey = (P24 p2+ %+ p3)/2p. (47-62)

The momenta p,, p,, p, introduced in (47-51) are in quantum reckoning, adapted to
the inversion of energy. Using instead the classical momenta, related to them by
(18-31), the result is . PR R 2 :ﬁ

3 2 /l/ 2/1/ s
where p;, can be interpreted as the fourth component of a vector p,, p, p;, p, of fixed
length p. Since we already have a phase coordinate normal to z, ¥, z, we can take
p,, to be the component in that dimension, i.e. the scale momentum.

We have arrived at the following physical representation, limited at present to ¥
particles. The object-particle has a half-quantum of angular momentum about every
particle in the environment; this is the only momentum contemplated. But the planes of
the angular momenta are unknown, and no assumption is made as to their probability
distribution. The corresponding linear momenta will therefore in general have com-
ponents in space as well as normal to space. These elementary linear momenta combine
quadratically, like waves in incoherent phase. Consequently the resultant momenta
in the four directions satisfy p2+p2+p2+p.2 = P2, where p? = X (}i/r,)? and is
independent of the planes of the angular momenta. The energy F; is a quantity p.2/2u
arising wholly from the extra-spatial component. In order to determine p;, we have to
measure pj, py, 05, and apply (47-63), P being a stabilised constant.

The space momenta p;, p,, p, can (owing to the quadratic law of combination) only
be zero, if each half-quantum is in a plane through r, and the extra-spatial axis. Thus
in the theory of the rest mass the planes are taken to have this distribution. But it is
not a general condition; and, when it is true, it is an inference from the observational
fact that p;, p,, p, have been measured and found to be zero. No other observational
information is introduced. Thus the calculated rest mass applies to a particle for which
only the three spatial momenta have been measured, i.e. to a ¥, particle. This explains
why the mass given by theé simple formula (47-4) is m,.

(47-63)
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We have now two alternative substitutes for the molar representation of the rest
energy of particles by curvature. The rest energy of an object-particle is either the result
of exclusion by the particles of the environment, which compete with it for the levels
of lowest energy; or it is the resultant energy of the continual interchange of the object-
particle with all the particles of the environment, the interchange being associated
with a half-quantum of angular momentum. At present we do not inquire further into
the origin of the exclusion principle or the half-quantum principle. It is sufficient to
recognise that both principles are familiar in the electrical part of quantum theory;
so that in tracing inertial mass to either of these sources we contribute to the unification
of theory. The half-quantum principle is the more elementary, the interchange of
extracules here treated being immediately related to the interchange of (or rather,
within) intracules in Chapter 11. The exclusion principle gives a connection with
more advanced parts of atomic physies.

To make clear the relation between the three representations of mass, consider a
pseudo-discrete assemblage. We began by treating the object-particle as an unidentified
member of the assemblage; as such it has its appropriate share of the molar energy
tensor which is identified with space-time curvature. If we try to identify the particles
by attaching suffixes s to them, continuous interchange occurs between every pair of
suffixes. The interchange energy of the identified particle is the same as the mass which
we assign to the unidentified particle. Another way of distinguishing the particles is
to provide each with a different ‘state’, the states being carefully chosen (§44) so that
transitions between them are negligible. There is no longer interchange energy; but
the states pile up to a high energy level, and the exclusion energy gives the mass that
was assigned to an unidentified particle.

48. The special planoid

In the special planoid N, = N, R, = R,, the quantum is the sub-threshold constant
fi;, and the particles are ¥ particles.

We have 03 = R}/BN; = R}/5N = %02, (48:11)
and for the weight constant w in (38-72),

By (3[4\ER (3\ _
T =5, = (3/3) 2= (z) - (4812)

Since all quantum-specified lengths and masses are fixed multiples of o and @, the
planoid reckoning of lengths (L) and masses (M) differs from the uranoid reckoning,
the transformation formulae being

L=0@¥L, M= %3M,. (48-2)

Results worked out in the special planoid have to be converted into ordinary measure
by these formulae.

It would lead to great complication if we did not keep the same number of particles
in the uranoid and the planoid; but the condition R, = R, is not so important; and we
can, if we prefer, eliminate the transformation of length. The specification of the
planoid is then

N,=N, R =3ER,, fiy=(3)¥h, L=1L, M= {?rM,. (48-3)
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The special planoid is to be considered in connection with the exclusion analysis in
§§41-43. Exclusion energy is equivalent to inertial-gravitational energy. The latter is
conventionally separated into inertial and gravitational energy, the inertial energy
being the top exclusion energy. In a large assemblage there is, in addition to the inertial
masses of the particles, a negative gravitational energy; this is the negative exclusion
energy (measured from € as zero), which arises because some of the particles must be
below the top level. Since exclusion theory is an equilibrium theory applying only to
uniform distributions, we cannot make a detailed comparison with the gravitational
energy of aggregations such as stars. But, considering the whole universe, we see that
a particle has a negative gravitational energy, due to the field of the rest of the universe,
corresponding to & — §, and amounting to 2 of its inertial mass. The factor 2 is a special
value for the Einstein universe; in the actual universe it would differ considerably, as
also in the planoid. In the special planoid the negative gravitational energy is f instead
of Z of the inertial energy, the selection factor being % instead of . The uncertainty of
the factor in the actual universe does not create any practical difficulty, because we
always remove the gravitational potential in the region we are considering by a local
transformation of coordinates—‘local’ here being a term wide enough to cover a
galaxy.

In the analysis of the uranoid (§ 42), the selection factor &, by increasing the density
and therefore decreasing « and increasing %, gave %, = (})}#; and quantum-specified
momenta %/r or energies fiv would transform in the same ratio. The argument assumes
that there is no change of the unit of length, so that the comparable transformation for
the planoid is (48-3). This identifies the selection factor for the special planoid as 4.
The practical value of the special planoid lies in the fact that it has this particular
selection factor.

In §16 we showed how multiplicity factors could be exhibited as selection factors.
There is no direct correspondence with the selection factors in exclusion theory; and
the connection does not extend beyond a general similarity of method. When the factor
is £, the selection of top particles gives the same change of density as the stabilisation
of scale which transforms a distribution of ¥V, particles into V; particles. When we pass
from the flat representation with additional phase coordinate in the planoid to the
curved representation in the uranoid, the scale is stabilised; so that ¥, planoid particles
become ¥ uranoid particles. We automatically provide for the consequent change of
density when we select the top particles.

It is clear that the exclusion principle as enunciated in (41-11) or (41-12) refers to
V, particles. It contemplates only three classifying characteristics of states, namely the
three spatial momenta. An indirect confirmation is given by the result (§47) that the
half-quantum interchange, which is equivalent to exclusion, yields the mass m, of a
V, particle. The exclusion calculation of mass does not provide any test of the multi-
plicity, because the top particle whose mass € = m, is calculated is a comparison
particle in super-threshold theory; and in that capacity it behaves like a particle of
multiplicity 1, whatever its intrinsic multiplicity. In super-threshold theory m, is
the mass of a V3, object-particle—hydrocule or standard particle according as system
B or 4 isused. This is introduced by a special process explained in § 42; but, since there
is a one-to-one correspondence, and the masses are the same, we can for practical
purposes regard the same particle as having the multiplicity 186 in gravitational theory

EFT 7
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and the effective multiplicity 3 in exclusion theory.* The only use of the latter multi-
plicity is to distinguish the V; particles in curvature representation and the ¥} particles
in scale-and-phase representation; but, since this is more simply expressed as a dis-
tinction between top and mean particles in the special planoid, we can eliminate all
reference to the exclusion multiplicity. Thus, for practical application, we regard the
planoid as composed of V;;; object-particles, with the usual understanding that only
the top particles appear in microscopic observation.

The advantage of the uniform flat environment provided by the planoid is not
merely that it simplifies the algebra. It gets over a difficulty of non-integrability of
states, which arises in spherical space. When we specify a state by the components of
the energy tensor, there is no way of extending the state over the whole of spherical
space, because the directions to which the components refer become ambiguous. The
result is that we fill spherical space with bits of states which do not join up into whole
‘states. In an early investigation® I found that there is at any point of space a certain
number N, of independent wave functions, and concluded that on the principle that
each particle is to be provided with a distinct wave function the total number of
-particles must be N,. It has since turned out that the actual number is N = 3N,. The
fallacy lay in supposing that the NN bits of states found at every point were equivalent
to NN, states covering the whole hypersphere; but they are not integrable elements of
states, and its appears that the equivalent of a quarter of them is lost by the misfit.

49. The energy of two protons

The analysis in Chapter I introduced an elementary two-particle system, which we
were able to identify with a proton and electron. This identification was to be expected,
for it is evident that a system of two protons or two electrons is not so elementary. The
like charges are the source of an extended electric field which induces opposite charges
somewhere in the environment. Properly they form, not a two-particle system, but
an incompletely separated part of a four-particle system. It is only by introducing
certain adaptations that two-particle analysis can be extended to like charges. We
shall now investigate this extension, taking for definiteness two protons.

The Coulomb or interchange energy of a proton-electron system has been calculated
theoretically; but a corresponding calculation for the proton-proton system would be
difficult owing to the non-existence of steady states. However, it is easy to deduce the
Coulomb energy of two protons from that of a proton and electron. A charged particle
has no Coulomb energy if it is in a neutral environment, the mutual energy being then
purely mechanical by definition. Also by definition equal distributions of positively
and negatively charged particles constitute neutral matter. It follows that for all
values of 7 the proton-proton electric energy must be equal and opposite to the proton-
electron energy —e?/r.

We have therefore to consider two particles with masses m,, and a positive Coulomb
energy e?/r; but this system is not simply superposable on the standard neutral

a A muiltiplicity factor is relative to the adopted system of classificatory characteristics. Normally
we adhere to the system provided by components of the energy. tensor, but a transformation to another
reference system is not forbidden. The treatment of the same particle as ¥z in gravitational classi-
fication and V, in exclusion classification can be regarded as an example of the relativity.

b Protons and Electrons, §§ 16-5-16-7.
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environment. A charge distribution, amounting altogether to — 2¢, is induced in the
environment. If we treat the two protons formally as an isolated two-particle system,
a term must be inserted in the hamiltonian to represent the effect of the suppressed
induced charges. In the theory of electrolytes and in astrophysics, this term is known
as Debye-Hiickel energy. Inthe fundamental equations of an object-system in the standard
wranotd it s the non-Coulombian energy.

The following procedure is an adaptation to electrical energy of a treatment that
has already been applied to mechanical energy. Instead of analysing matter into
retativity particles which disturb the uranoid gravitationally, we have analysed it
into quantum particles which are superpositions on an undisturbed uranoid. This will
now be extended to electric charge. Instead of relativity charges (classical charges)
which induce opposite charges in the environment, we consider quantum charges
which are simply superposed on the environment. The protons and electrons in our
analysis are carriers of quantum charges.

We shall show that the energy of a pair of quantum charges is

E = —efr (unlike charges), 49-1
B = e?r+ Bo(r') (like charges), ( )

where ¢ is Dirac’s function
[8(r)dV =1 (8(r) = 0, if r+0), (49-2)

and B is a constant which will be determined presently. The difference between 7
and 7’ has been explained in § 5; ' is measured directly from one particle to the other,
and 7 (which is the more usual measure) corresponds to the coordinate-differences £, 7, &.

Consider a single proton as object-system, and first treat its charge classically. In
selecting it as object-system we leave an unpaired electron in the environment, which
is the induced charge above-mentioned. Since the uranoid particles have uniform
probability distribution, the selection leaves a charge —e distributed uniformly over
the uranoid; and the mutual electric energy of the proton and the disturbed uranoid is

—0 = —[etfr] = —er 1], (49-31)

the square bracket denoting mean value.

Now substitute quantum charges, assuming provisionally the energy formula (49-1).
The object-proton is now a charge superposed on the undisturbed uranoid, which
accordingly contains ;N electrons and & protons. If V is the volume of the uranoid,
each particle has a probability dV/V of being in an element dV'; and the mutual energy
of the object-proton and a uranoid particle is

1 J EdV =—-0 for an elec‘oron,l
i% (49-32)

=0+ B/V for a proton, J
by (49-1). The total mutual energy of the object-proton and the uranoid is therefore
1IN B/V. This has to agree with the previous result (49-31) obtained by the classical or
relativity calculation; hence

INB|V = -0 = —e[r1]. _ (49-33)
72
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The argument applies to a planoidal as well as a uranoidal environment; and the
caloulation is made easy by using the special planocid. By (47-1) 2 = 2e2/R, = 3¢*/R,,
This, being of the form #/r, is a quantum-specified energy, and must be multiplied by
(%)t to convert from planoidal to ordinary measure in accordance with (48-2). Hence

WB[V = —§(§) /Ry, | (49:34)
and, since V = 47 R§,
B = — (4)}47e2 R[N = — (%)} 16me202. (49-4)

In order to show the necessity of the form Bd(r') of the supplementary term, we
shall put the calculation in another form. In a geometrical frame 2, y, z the probability
distribution is continuous; for the concentration of a finite amount of probability in an
infinitesimal volume would be contrary to the uncertainty principle. The same is true
for a physical frame £, 9, { whose origin is the centroid of a number of particles. But
if we employ a frame £, %', {’ measured from a proton as origin, we artificially introduce
a singularity. Considering the uranoid particles referred, first to an z-frame or
£-frame, and secondly to a £'-frame, the distinction is that in the latter frame the point
(0,0, 0) is certainly occupied by a proton. This property provides the formal definition
of a &'-frame or, as we may now call it, a singular frame; because, protons being indis-
tinguishable, it would be impossible to say which of the 1NV protons has been chosen as
origin. Any one of them has an equal chance of being the occupant of the singular point;
so that the probability distribution of a proton consists of a discrete chance 2/N of
occupying the origin together with a probability 1 — 2/N evenly distributed over space
This gives, for the probability in an element dV,

(2., 2\ 1 .
(N 8y + (I“N) T/) av. (49-51)
If the protons are classical protons, each carries independently of its position the

electrical energy — £ due to the opposite charge of the rest of the uranoid. Multiplying
(49-51) by —£2, the energy distribution is

(BS(r')— ) %I—f , (49-52)
where ' = (1—2/N) {2, and (as before) ‘ ‘
B =—20QV/N. (49-53)

The distribution of carriers is a matter of conception, the physically significant
result being the distribution of that which is carried. We can therefore re-interpret
(49-52), by taking dV/V to be the probability distribution of the carrier, and Bé(r') — £’
to be the energy carried. The new carriers are quantum protons. They have uniform dis-
tribution in the singular frame. Their chances of occupying the originare infinitesimal,
and so also is their combined chance. The permanent proton at the origin, which we
regard as part of the frame, is therefore additional.

The Coulomb energy of the proton is included in £’ in so far as it arises from protons
and electrons with uniform probability distribution uncorrelated to its own; but, of
course, the Coulomb energy due to a charge whose distance from it is prescribed (either
exactly or as a probability distribution) must be taken into account separately. In
particular, the Coulomb energy due to the singular proton is not included in £'.
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(Strictly, it should be reduced in the ratio £’/ like the rest of the Coulomb energy of
a quantum proton, but the correction is insignificant.) The constant part of the energy
£’ might be included in the mass of the proton, but it is utterly insignificant. Thus we
have for the energy of a quantum proton in the field of another proton taken as origin
the singular energy BJ(r') together with the ordinary Coulombian energy.

Since one of the protons is itself the origin of the coordinates &', 4', {’, the corre-
sponding 7 is the directly measured distance. Relative coordinates and distances
defined in this way have not been used in any of our previous investigations. In
particular the relative coordinates introduced in the two-particle transformation
(26-12) are coordinate-differences. Having obtained the non-Coulombian energy
Bé(r') in the &'-frame, we have to transform to the £-frame in order to apply it in the
ordinary equations. By (5-1), the singular point #" = 0 corresponds to a Gaussian prob-
ability distribution of £, #, { with standard deviation o \/2; so that

8(r') = (4mo?)~E g, (49-6)

Combining (49-4) and (49-6),
Bo(r') = 16)€*  raon 49-7
R o ) (#97)

The general reason for the form Bd(»’) can be stated as follows: When a system of two
like charges is treated as a superposition on an undisturbed environment, an adjust-
ment of the energy must be made to compensate for the omission of the induced charges.
Except when the separation vanishes, no change can be made, owing to the condition
that the energy must be equal and opposite to the energy of two corresponding unlike
charges, for which the difficulty of superposition does not arise. The adjustment must
therefore take the form of a §-function of the separation. The argument in the second
paragraph of this section shows that the vanishing of the separation must be defined
in the same way as the coincidence of two unlike charges in a neutral particle. Clearly
the latter coincidence is defined by 7’ = 0, the physical origin being irrelevant.

50. Non-Coulombian energy

As usual the elementary result (49-7) is modified by a multiplicity factor when used
in current formulae. Before we can calculate this factor it is necessary to decide at
what stage in the stabilisation the substitution of quantum protons for classical protons
is to be made. The principle of superposition on an undisturbed environment requires
that the field shall be rigid gravitationally as well as electrically; otherwise we should
have to allow for gravitational disturbance of the environment by the energy which
we add to eliminate the electrical disturbance. The Coulomb energy is added in the
V15, rigid field, and it is primarily in that field that we make the adjustments treated in
the last section. In rigid coordinates the Coulomb energy is #/r and the value of B is
correspondingly 137 times greater; but the same factor applies also to the mass m,
of the hydrocule which becomes 137m, Removing it in anticipation of the trans-
formation to Galilean coordinates, we can define the stage at which the energy (49-7)
is to be inserted as that in which the mass of the hydrocule is m,. This means that the
adjustment can be made directly in the special planoid where the top particles have
the mass m.
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We have found two ways of introducing protons and electrons. In the first method
the hydrocule of mass m, is taken as object-particle and split into a proton and electron.
This is inappropriate here, because we want to obtain two protons alone. In the second
method (§§ 22, 42) the hydrocule of mass m,is taken as comparison particle, and protons
or electrons are added singly together with comparison holes. Using this method we
must first decide the sign of our singular frame—that it is to have a proton, not an
electron, as origin. We then regard the comparison particles as an equal mixture of
two classes, class (a) having an additional energy BS(r'), and class (b) having no
additional energy. Class (2) comparison particles must be used to form protons, and
class (b) to form electrons; or we may put it that, when a proton is introduced, its
comparison hole eliminates a particle of class (a). In formula (22-7) determining the
rest energy of the proton, mgis replaced by my+ Bé(r'); and it follows that the correction

to the energy m,, of the proton is m
| 'n_@f BS('). (50-1)

It will be noticed that the factor m,/m, occurs in the non-Coulombian but not
in the Coulombian energy. The latter is transition energy unaffected by changes of
multiplicity. The non-Coulombian energy is an adjustment of initial energy which
allows us to simplify a four-particle system into a two-particle system. It is on the
same footing as the rest mass itself, which may be regarded as an adjustment in
reducing a L N-particle system to a one-particle system, since it takes the place of the
interchange of the extracule with all the other extracules.

Inserting the factor m,/m, in (49:7), the non-Coulombian energy of two protons is

E = — Ae ", (50-2)
where k = 20 = R[N, (50-3)
16\t m,, e?

The value of o can be found directly from the Rydberg constant. By (40-8), (29-5)
29.
and (29-3), _lg,_(@ﬂ%ﬁ\/(%N) M _ 1367

_s 11 A2 pe
T 104 cRy, °’ .10'3"’ %*Q(Tz)ﬂ)%fz'

From these we find

\ ; — RO R 3 1 — O —14
C T2 N T 1367, 137. 1675 R 9604 > 107 om. (50-5)
Then, by (50-3) and (50-4), -
k = 1-9208 x 1013 cm., )
(50-6)

A = 42572 x 105 erg = 52-01m,c2.

Tt remains to consider whether any f-factors are introduced in the transformation
to the observational system. Since e is the same in both systems, and o~ has a cal-
culated ratio to the Rydberg constant, it appears that by using the observational
constant R in (50-5) the values of 4 and % are given in the observational system. To
make this conclusive, we have to show that the numerical factor (50-5) is obtained as
the ratio of o to Rz' when the whole calculation is carried out in system B. This is
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easily confirmed; and, since the ratio is unchanged by the transformation to the
observational system, I conclude that (50-6) requires no correction for g-factors. It is
understood that A4 is an optically controlled energy.

Observational values of k and 4 are found from the scattering of protons by protons.
The values given by Thaxton® are k& = 1-9x 1013 em., 4 = 51-4m,c?. These deter-
minations are rough. But, although the scattering experiments give weak determina-
tions of A and k separately, they give a good determination of 4%2. Consequently a
good determination of 4 is obtained by reducing the scattering data with the calculated
value 1-9208 x 1013 of k. Using the data of Breit, Thaxton and Eisenbud,? we find
in this way, Ajm,c® observed 52-26, calculated 52-01.

The resultant energy (Coulombian and non-Coulombian) of two protons is negative
when their separation is between 0-03% and 2-07%; and the resultant force is attractive
when the separation is between 0-25k and 2-69%. The maximum ratio of the non-
Coulombian to the Coulombian energy is 15-2.

For two electrons we have to substitute m, for m,, in (50-4). The resultant energy is
always positive, and the resultant force repulsive. The non-Coulombian energy is
never more than 13 of the Coulombian energy, and the non-Coulombian force is never
more than & of the Coulombian force. Thus in practice the non-Coulombian energy of
two electrons is negligible; and, since there is none between unlike charges, the only
non-Coulombian energy that need be considered is that between protons.

In finding B by (49-53) we had to calculate the value of V. This calculation was
simplified by using the planoid. In an earlier investigation I calculated it in the
uranoid, using the relativity equations for the electric potential of a charge in curved
space. The result 27 R%e? was the same except that the (4)* factor was absent. The
difference arises from the divergence of treatment of energy in relativity theory and
quantum theory, which introduces a difference of definition. The constants are adjusted
so that the measures agree in a small flat region, but the difference manifests itself when
curvature has to be taken into account.

51. The constant of gravitation

We have now three independent ways of determining R,/,/N from laboratory data,
two of them from proton scattering experiments using the values of k and 4 respectively,
and the third (which is very much more accurate) from u, # and ¢ by (40-8). We
can determine RBy/N from m, x and ¢ by the elementary formula (5-41). We have
also a rough determination of R, from the observed recession of the nebulae. In
Chapter xii1 a purely theoretical calculation of N will be made, giving the value
$.136.2%6 which should be exact. Leaving out the three weak determinations, our
principal formulae are

By «m
N " e’ (61-1)
R, 136(9\ f
JN=To (%) 2ment’ (51-2)
N =£.136.22%, (51-3)

2 Physica, 7, 122, 1940. b Physical Review, 55, 1018, 1939,
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From (51-1) and (51:2), together with Ac/2me? = 137 and e/mc = §F = A</, we
obtain

&k  136.137 ( 9 )’fﬂﬁ* (51-4)

2= 10 \20) yN

which gives NV in terms of familiar constants. Conversely, using the theoretical value
(51-3), we obtain the following comparison:

k(%52  calculated 8-0939 x 10737, observed (8-098 + 0-006) x 1037,  (51-5)

“Since §’ is known much mere accurately than «, we use the calculated value of
K[ % to give a determination of . The result is '

K = 66665 x 108, {51-6)
which should be accurate to about 1 part in 5000. The observed value is
(6-670 £ 0-005) x 10-8,

The question arises whether (51-6) is necessarily the value of the constant of gravita-
tion that would be determined in actual experimental conditions. In obtaining (51-1)
and (51:2) we postulate a universe composed of a steady uniform zero-temperature
distribution of protons and electrons. We are, of course, allowed to rearrange the
matter of the universe in a way that simplifies the theoretical calculation of «/f"%c?,
just as the experimenter is allowed to rearrange the matter in his laboratory in a way
that simplifies the experimental determination. But in such rearrangement the
experimenter cannot, and the theorist must not, violate the conservation of energy.
Formally at least there is an implicit assumption that in the actual universe, the energy
of free radiation, cosmic rays, etc., is just sufficient to re-transmute the complex ele-
ments into hydrogen, restore the gravitational energy lost in forming condensations,
and leave a uniform static distribution at zero temperature. I think that for epistemo-
logical reasons this assumption is correct; but it is not really needed for the present
purpose. The introduction of a whole uranoid is a mathematical convenience designed
to avoid a troublesome investigation of boundary conditions. The uranoid or the
boundary conditions fix the scale of measure; but this ceases to have any importance
when it is a question of determining a purely numerical ratio such as «/%'%c2. The
remote environment has no more effect on the determination of the numerical ratio
k/% %2 by local measurements than it has on determining the numerical ratio # by
local measurements of the circumference and diameter of a circle.

The foregoing question would scarcely have arisen were it not that according to
(51-4), /& "2%c? depends on the total number of particles, so that the remote environment,
seems to play an essential part. But mathematical dependence is not the same thing as
physical causation; and the equation can equally be read as an assertion that the
number of particles in the universe is determined by a universal constant «/{%c?
which we can measure locally. This is the natural physical interpretation. The constant
determines the contribution of a particle to the curvature of space, and fixes N by
closing the space as soon as the contributions add up to the required amount.

I think therefore that there is no doubt that (51-6) is the constant of gravitation in
the actual universe.
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The force-constant F = e?/km,,m,, or ratio of the electrical to the gravitational force
between a proton and electron, has a special interest. By (29:6), m,m, = £3m3/10.
Hence, by (51-4), 9
F = W\/(MV)' (51-7)

The limiting speed of recession of the galaxies, given by the Friedmann-Lemaitre
theory, is ¥, = ¢/R, /3. The comparison with astronomical observation has been given
in § 5. It is of interest to note that

K, = o/J/(3N), (51-8)

50 that the recession-constant can be derived from the range-constant of nuclear forces,
or vice versa, with no other observational data except the velocity of light.

The following table of calculated constants is a continuation of the table in §32.
The only observational data used are the three conversion constants in (32-1), and
(for certain astronomical constants) the value of the megaparsec in centimetres.
Observed values are available for Nos. 16, 22, 24, 26; the comparisons have already
been given. A number of additional constants will be determined in Chapters 1xsqq.
A summary of all the comparisons of theory and observation is given in Chapter x1v.

52. Molar and nuclear constants

Ref. no. Symbol Description Calculated
16 K Constant of gravitation 6-6665 x 10-8
17 N Particles in the universe 2:-36216 x 107
18 R, Einstein radius of space 9-33544 x 1028
19 B, (In megaparsecs) 302-38
20 M, Mass of the universe 1-97675 x 1058
21 Po Density of Einstein universe 1-23088 x 10-27
22 Vs Nebular recession (km.sec.”'mp.~1) 572-36
23 e2/Kkm ,m, Force constant 2:2714 x 10%°
24 k Nuclear range-constant 1-9208 x 10-13
25 A Nuclear energy-constant 4-2572 x 1078
26 Ajm,c? 52:01
27 o Uncertainty constant 9-604 x 10714




Chapter VI
THE COMPLETE MOMENTUM VECTOR

53. The symbolic frame

We have introduced particles, called V;, particles, which have in addition to linear
momentum and energy an intrinsic angular momentum or ‘spin’. In four dimensions.
the linear momentum and energy form a 4-vector p,, p,, ps, p, and the angular momen-
tum forms a 6-vector p,y, Py, P1as Pras Poss Par- The mechanical state of the particle is.
specified by a probability distribution of these 10 variates.

This mechanical specification applies also to a rigid body except that the angular
momentum 6-vector is then more specialised, being subject to the condition that when
the axes are chosen so that p,, p,, p are zero the components p,,, Pa,, P34 are zero. This
reduces the number of independent components to 7, and the microscopic analogue of
a rigid body is a ;. We can impese rigidity, or coupling of the spin vector to the linear
momentum vector, on a microscopic particle as a stabilising condition if occasion arises;
but to begin with we treat particles in which all 10 variates are independent. An exact
molar analogue of the I, particle is the mean of four or more rigid bodies, for the
corresponding P,, Py, ete., are all independent. |

For greater symmetry we change the notation of the momentum 4-vector to p,y,
Pasy Pass Pas- We can then express the whole (4 + 6)-vector as

P=2Z2E,p, (uv=123425;u+v), (53-1)

the B, being symbolic coefficients. The device of expressing a vector as a linear function
of its components with symbolic coefficients was first developed in quaternion theory;
and the symbolic calculus which will be treated in this chapter is in fact a double
quaternion algebra.

The symbols &,,, which will be used very extensively, are the basis of a form of
mathematical analysis which T have called wave tensor calculus. Like ordinary tensor
caleulus, this is peculiarly adopted to the concepts of relativity theory. The new calculus
is required because ordinary tensor calculus is unable to cope with the distributions of
angular momentum which play a leading part in atomic physics. I have given a leisurely
development of wave tensor calculus, with full proofs of the formulae in Relativity
Theory of Protons and Electrons. Here I shall summarise the elementary algebraic
properties of the E-symbols very briefly, and pass on as quickly as possible to their
application to relativity theory. -

Chapters 1-v and Chapters vi-viir form two different lines of approach to funda.*
mental physics which we may distinguish as statistical theory and spin theory. They have
only occasional contact until the end of Chapter vix, but are brought together in the
rest of the book. In the formal sequence of deduction the present approach is supposed
to precede our earlier approach; so that various elementary results, previously used by
anticipation or referred to as common knowledge, are no longer allowed to be assumed
without proof. '

The ‘complete set’ of £,, consists of 16 symbols. The set of 10 symbols in (53-1) is
enlarged to 15 by admitting an extra value 0 for the suffixes g, v; the remaining symbol
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is B,y = + 4. All 16 symbols are square roots of - 1; but some pairs commmute and some
anticommute according to a scheme given below in (63-4). A linear function of the
symbols with numerical coefficients (real or complex)is called an E-number; the general
form of an E-number is accordingly

P = Elﬁpw-!-fﬂwpw (#,v=20,1,2,8,4,5; n+=v). (53-2)

Since By, = +4, the term Eipys is algebraic.® The algebraic term in an E-number is
called the quarterspur (abbreviated as ‘qs’). Thus

s P = Eipie = + iPrg- {53-3)

We distinguish B-numbers as spurred or spurless according as qs P+0or qs P = 0.
The definition of the symbols in (53-4) will provide that E, = —FE . These are
counted as alternative forms of the same symbol; so that only one of them is included
in the summation in (53-2). Since the same term may appear either as #,,p,, or E,
the numerical coefficients also have alternative forms R
The 15 non-algebraic symbols have the following multiplication table: If g, v, o, 7, A, p
is an even permutation of 0, 1, 2, 3,4, 5,

ﬁpyﬂj

E B _ =—1

o 3

E B,=—E,E, —FE

wr HY ?

B,E, =B, E, = EE,,

Hy o

(58-4)

The summation convention is not used in connection with these suffixes. Tt is easily
verified that the foregoing multiplication table is self-consistent.

This multiplication table, together with the identification of Eis a8 ¢ or —1q, is the
definition of the E-symbols; and we regard them as having no properties other than
those stated in, or derivable from, this definition. The table specifiesa © group-structure’,
and no more is stated about the E,, than that they are a set of elements of this group-
structure. Tt is this economy of statement which makes a set of elements defined by

-a multiplication table the most appropriate framework for -expressing the kind of
knowledge we can have (or without inconsistency believe ourselves to have) about a
world wholly external to the individual mind. Al other formulations betray us into
stating more than our knowledge justifies; they do not provide a language in which
we can say what we want to say without irrelevant embellishments. The group-
structure of the E-symbols will Iater be found to be identical with that of the rotations
in the 15 coordinate planes in a Euclidean space of six dimensions; so that we can
represent the &, graphically by this set of rotations. But it is retrograde to regard the
rotations as interpreting the E-symbols; the E-symbols interpret the rotations. For
all that we can know as to the nature of rotation, as an element of description applied
to a world external to the mind, is comprised in a gymbolic specification of the group-
structure of the set of possible rotations; and any more vivid conception that our minds
associate with rotation is alien to the significance of rotation in physics.

Evidently the sum of two E-numbers is an E-number; and, since E,¢ stands for ¢ or
—1, the multiplication table shows that the product of two E-numbers is an E-number.

* ‘Algebraic’ will be used throughout in the sense ‘elementary-algebraic’, i.e. obeying the rules of

ordinary commutative algebra. In particular an algebraic number is here defined as a symbol which eom-
mutes with every other symbol in the caleulus.
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Thus the E-numbers have a closed algebra. 1t was in order to close the algebra that we
extended the number of #,, from 10 to 15. The 10 symbols included in (53-1) taken by
themselves do not give a closed algebra. It will be found in due course that the set of
E-symbols defined by the multiplication table (53-4) supplies the appropriate symbolic
coefficients for vectors of physics, including the (4 6)-momentum vector of a ¥, as
given in (53-1); but at first we confiné our attention to their purely algebraic propertles
We can pick out three important kinds of sub-set:

(1) Pentads. The table (53-4) shows that two symbols commute or anticommute
according as they have no suffix or one suffix in common. We therefore obtain a sub-set
of mutually anticommuting symbols by fixing one suffix and letting the other vary,
e.8. By, By, By, By, Bys. Such a sub-set is called a “pentad’.

(2) Anti-tetrads. The largest sub-set of mutually commuting symbols ¥, is three,
o.8. By, Fys, By Such a sub-set is called an ‘anti-triad’. By adding the algebraic
symbol K, we obtam a set of four mutually commuting symbols called an ‘anti-
tetrad’.
 (3) Conjugate triads. Besides the tria,ds of anticommuting symbols which form parts
of pentads, there exist cyclic triads E,,, B,,, E, . To any one of these there is a conjugate
triad ,,, By, E,,- We therefore distinguish as a sub-set & “conjugate triad- -pair’, e.g.
By, Hy, By, and E45, E,,, E,,. Within each triad the symbols anticommute, but each
member of one triad commutes with each member of the other triad.

These structural features—pentads, anti-tetrads, and triad-pairs—form a pattern
of interlacing. The description of a structural pattern, without ascribing any particular
nature to the elements of the pattern, or even to the operation which we picture as
‘weaving’, is the essence of the group concept as applied in physics.

54. Miscellaneous properties of E-symbols

We shall often use a one-suffix notation £, (# = 1, 2, ..., 16) for the set of £-symbols;
so that an E-number is written as

16
P =S B,pp o (54-1)

The following results are easily established:®

(@) If E, is any one of the symbols, the 16 products B, B, (¢ = 1,2, ..., 16) reproduce
the set , in a different order, apart from algebraic factors +1or fs.

(b) The 16 symbols are not connected by any linear algebraic relation; that is to say,
the set is not redundant.

(¢} If an E-number XH,p, is equal to 0, every component p, is equal to 0. If
XB,p, = ZE,p,, then p, = p,.

(d) Each symbol, except E,¢, anticommutes with 8 symbols, namely the remaining
members of the two pentads to which it belongs; it commutes with the remaining
8 symbols, which include itself and Eyg.

{¢) If P commutes with E,, every non-vanishing term of P commutes with E;
if P anticommutes with %, every non-vanishing term of P anticommutes with E,.

(f) Each symbol, except E,q, anticommutes with at least one member of a given
tetrad. (A tetrad consists of four members of a pentad.) Hence, if an F-number com-

» Proofs, where necessary, are given in Protons and Electrons, §§ 24, 2-5.
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mutes with all four members of a tetrad, it is an algebraic number. This is the criterion
generally used in practice when we want to prove that a symbolic expression reduces
to an algebraic number. |

"(9) The components p , of an E-number P are given by

D,=--qs (E#P). (54-2)

For, by (a}, & , P consists of 16 terms, one of which is algebraic; and we see at once that
the algebraic term is ¥,. 8, p,= —p,.
{#) For two &-numbers P, Q

qs (P@)=gs ( QP) 2,049, (64-3)
(?) Hor any E-number P

21 E,PE,=~16qs P. (54-4)

For, considering a term E, p, of P, the sum XE W Eop.) B, gives E_p, eight times and
—E_p, eight times, except when o= 16.

(7) If four symbols forming a tetrad, e.g. By, Ey,, Ey, B,,, are given, together with
E,;, the remaining symbols can be expressed as products of these, so that the whole
set is uniquely defined. We therefore regard the complete set as ‘generated’ by a tetrad.

55. Equivalence and chirality

An E-number P is said to be non-singular if there exists a reciprocal E-number P-1
such that P~1P = 1. It can easily be shown that the reciprocal, if any, is unique and
that it commutes with P; so that the same reciprocal is defined by the condition
PP1=1

If ¢ is any non-singular £-number, the transformation

B, =qB,q" (551)

gives a set of symbols E, which satisfy the multiplication table (53-4) together with
Elg = 1i. For example,

BB, =qB,,q7E, ¢ = 9B, B,q ' =qE,q! = E,,

Thus the two sets of symbols & E, E, have the same group structure, and are equivalent
sels. )

An E-number P = ZE p, can also be expressed as an E'-number ZH, p,. By (54-2)
the new coefficients are E

= —qs(E,P) = —qs(¢B,q'P). (55-2)

Weregard p, and p), (¢ = 1,2, ..., 16) as the components of P in two different, but equiva-
lent, reference frames. We shall therefore commonly speak of the set of 16 symbols as
a frame. The E-frame and E’-frame are relativistically equivalent in the sense in which
two Lorentz frames are equivalent. Intrinsically they are indistinguishable, because
the gymbols have by definition no properties other than that of satisfying the multi-
plication table. But having arbitrarily chosen a frame to be designated E, we can dis-
tinguish other frames E’, E”, ..., by giving the components in the initial frame E of
the transformation H-numbers ¢’, ¢", ... which generate them. Similarly, having
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arbitrarily chosen an initial Lorentz frame, we distinguish other frames by giving the
velocities, referred to the initial frame, of their origins.

We shall apply E-frames to physics in such a way that the equivalence of Lorentz
frames is included in the equivalence of E-frames, and the transformations of special
relativity theory are included in the general transformation (55-1).

Consider a physical system S whose characteristics are specified by E-numbers
P,Q, R, ..., where P = XE p, Q= 2E,q, ... Let 8 be another system correspond-
ingly specified by F’, @', R', ..., where P’ = XE)p,, Q' = 2E,q,, .... Since the systems
are constructed according to the same specification (p 2 Qs ---) 10 different but equi-
valent frames, they have the same intrinsic indistinguishability as the frames, and are
‘equivalent systems’.

Regarding the transformation §— 8" as a change undergone by a physical system,
we call it a rofation. The term ‘rotation’ is contrasted with ‘strain’. We shall use the
terms ‘rotation’ and ‘strain’ with the widest generality to describe changes of the
specification of a system, the distinction being that a strain involves an intrinsie
alteration of the system, whereas a rotation merely changes it into another equivalent
system. For a rotation we have, by (55:1),

P =2Hp, = ZE,p,)q " =qPg, (65-3)

so that the transformation g(...) ¢! applied to any E-number is a rotation, i.e. a rota-
tion of the carrier of the characteristics specified by P. For emphasis we shall sometimes
use the expression ‘relativity rotation’, as a reminder that the system remains rela-
tivistically equivalent to its former self—as in the rotations of special relativity theory.

If, in the rotation of a physical system, the reference frame is kept unchanged,

55-3) is re-written as . . .
(55:3) P’ = I8y, = qPgY, (55-4)
and the rotation is then specified by the transformation p 1, of the components.
The nature of the transformation p, - p/, will be investigated in § 56.

It is necessary to examine whether all possible rotations are included in ¢(...) gt
It can be proved® that, if £, is any set of E-numbers satisfying the multiplication table,
and if By = Iyq, there exists a transformation £}, = q&,q1, where

¢=aX B BE, ¢'=aX B EE, (555)

L el

o being an algebraic number, and £, being one of the 16 E-symbols. The appropriate
E, has to be found by trial and error. Usually the product of X Wb BB, and X, E,E, &,
is 0; but there is just one %, which makes the product a non-zero algebraic number,
and & can then be chosen so that (55-5) satisfies gg— = 1. ,

The explanation of this rather complicated procedure is as follows, By § 54 (4) the
set K, is generated by a tetrad, say Ej,, Hi,, Bi;, Hy.. The 16 sets generated by the
tetrads + By, £ Hp,, + Eyy, t+ Ey, are called images of one another. These images are
sets connected with £, by the transformation (55-5), ¥, being different in each case.
The image for which £, = B, is said to ‘correspond’ to E,. Between corresponding
sets the transformation (55-5) takes the simpler form '

q=alE.E, q'=alEE, (55:6)

np

& Protons and Elecirons, §§ 2-7, 2-8,
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- Since E,q = + 1, it commutes with ¢; and g&,,97! = F39¢7" = By Thus there is no
transformation ¢(...) g~ between sets such that &= — K.

To sum up: E-frames are divided into two systems according as Bg = ¢ or Hg= —¢.
In either system every pair of frames is connected by a rotation ¢(...)g~*; but there is
no rotation between frames of opposite systems. Evidently the frames of each system
form a continuum, and the rotation ¢(...) g can be performed in a series of infinitesimal
steps. There is complete discontinuity between the two systems.®

Thus the symbolic scheme provides for the representation of structures which,
though intrinsically similar, cannot be rotated into one another. This distinction,

familiarly illustrated by a right-handed and a left-handed sorew, is called chirality.?

The two kinds of frame will be distinguished as right-handed and lefi-handed. Con-
ventionally the frames with F,; = ¢ are right-handed. This is non-committal, because
it is impossible to define which of the two algebraic square roots of —1 has been
designated 3. | :

From the table (53-4) we find that a right-handed frame ¥, and a left-handed frame
F, may bave 10 symbols in common, the remaining 6 being reversed in sign. If,
starting with the same generating tetrad E,;, Fys, Hys, By, we construct right- and left-
handed sets, the symbols reversed in sign are

'Eop Eooy Boss Bos oy Eig. (65-7)

Consider two particles, carriers of variates p,, which are specified by E-numbers
P=2Ep, P'=2F,p, These, bemg simllarl?r congtructed in chirally opposite frames
E,, F,, have the same kind of opposite chirality as the frames; they are intrinsically
similar but cannot be rotated into one another. When both particles are referred to the
right-handed frame #,, P' becomes 2# . pl, where

Pl = ;Pﬂ, for the 6 components in (55-7),}

p}“‘ =p,,  for the other 10 components. (85:8)

According to classical electromagnetic theory the distinction between positive and
negative electrification consists in opposite chirality, positive and negative charges
being sources of chirally opposite rotational strains in the aether. We may therefore
expect that P and P' will describe particles which are electrically or magnetically
opposite; and that the 6 components (55:7) which are reversed in gign, will describe
distinctively electromagnetic characteristics. The 10 components p,, with g, v = 1, 2, 3,
4, 5, which are unreversed, will then represent mechanical characteristics. They are the
components which we have already provisionally allotted to the linear momentum
4-vector and the angular momentum 6-vector in (53-1).

We have thus an outline of a scheme of physical identification of the components of
an E-number. Tt is not suggested that the foregoing considerations are a proof of the
identification; nor, on the other hand, are we indulging in speculation. The position is
that we have acquired a new mathematical tool—a symbolic E-frame—and we have
to learn the art of using it. We shall not achieve much by prodding about with it
aimlessly. Tt is guidance as to method, not demonstration or hypothesis, that concerns
us at this stage.

& The recognition of the two systems of frames is due to 8. R. Milner.
b The term appears to have been fixst introdueed by Kelvin.
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Normally when a single particle is contemplated as object-system, the environment
is taken to be a meutral unpolarisable uranoid., The distinctively electromagnetic
components of P are then dormant; there is nothing for them to interact with, and they
have no observational significance. This idealisation of the environment gives the
Vio particles, whose ‘complete momentum vector’ consists of the 10 mechanical com-
ponents. When all 16 components are included we call P the extended momentum vector.

56. Rotations

We shall now investigate the transformation g .10, of the components of an
E-number corresponding to a rotation ¢(...)g~*. We consider first a ‘simple rotation’
q = eﬁE}wG. (56‘1)
An exponential containing a non-algebraic symbol is understood to be defined by
the exponential series. From this definition it is easily found that

e"wb = cos 0+ B,,8in0, eBpleFwd = 1, (56-21)

just as though K, were an algebraic square root of — 1. In fact, the usual theory of
exponentials applies unless there are non-commuting terms in the exponent; but, for
example, efoulitEuls 4 ¢Eufi, ¢, For g = eiFw? we have ¢X = Xg if X commutes
with &, and ¢X = Xq1 if X anticommutes with E . The rotation X’ = ¢Xg¢?
therefore gives X' = X if X commutes with B, and

X' =Xg %= Xe ¥l = X(cosf— £, sin0)
if it anticommutes. Hence, if x, v, o, 7 are different suffixes,

E;’T = ED’T’ ,

; . . (56-22)
B, =E,(cos0—E,sinf) = E, 0080+ E, sing.

The rotation ¢ transforms P = JE, p, to P' = ZE,p,, which is then referred to the
original frame B, and re-written P’ = X, p/; so that

P'=2XE,p,=2E,p,. (56-31)
Hence, by (54-2), P,=—qs(E,P), p,=-—qgs (B, P). (56-32)
Then Por = B (56+41)

Ppo = —{(E,, cos0+ E,, sin ) P’}
=—qs{l,, P)cosf—qs(E, P)sing
= Pr 008 0+ ) 8in 6, (56-42)
For example, the rotation ¢ = ¢tEnf gives
Por = Po1 €080+ pgesing, pyy = pogcos 6 —pj, sin g, Pos = Doy Poa = Poa-  (56-5)

The whole result of the E,, rotation is that 4 pairs of components ( DPo1s Pozs Ps1s Pas2s
Par» Paz; Ps1> Psa) are rotated through an angle @ in their respective planes like rect-
angular components of a vector, and the remaining components are unchanged. By
taking ¢ = ¢*%f with ¢ = 1,2, ..., 15, we obtain 15 independent simple rotations, each
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rotating 4 pairs of components and leaving 8 components unchanged. If 4 = 16, P ig
unchanged. _

Not every pair of components can be linked in rotation. Two components which can
rotate together are said to be perpendicular; those which cannot are said to be anti-
perpendicular. By (56-42), components are perpendicular if their symbols anticommute,
and antiperpendicular if their symbols commute. The rotation linking two perpen-
dicular components p,,, p,, is ¢ = et€wfu; thus the symbols of the two components
and their rotation form a cyclic triad.

Consider four mutually perpendicular components pgy, Poss Pogs Pos- I We represent
them geometrically as components of a vector referred to rectangular axes w;, @,, @3, @,
in 4-space, it follows from (56-5) that the E,, rotation is represented as a geometrical
rotation in the x, %, plane. Similarly the symbolic rotations with E, equal to

By, E31> By, By, Boy, By, (56-6)
are represented by ordinary geometrical rotations in the six coordinate planes of the
4-gpace. _

The transformation which rotates p,, and p,, also rotates three other pairs of com-
ponents. This coupling of transformations is commonly provided for by assigning

appropriate vector or tensor character to the sets of variables concerned. It is easily
shown that the correct coupling is obtained if we'represent the components of P by

(@) a 4-vector py;; Dos, Pos» Poss )
(b) a 4-vector py,, Pos, , Pass

150 P2s> Pasr Pas i (567)
(¢} a 6-vector Pa3, Pyrs Pig> Pigs Poas Paas

(d) two invariants pys, Pye-

According to (55-7) one 4-vector is mechanical and one electrical; the 6-vector is
mechanical, and both invariants are electrical.

We have thus obtained a representation of E-numbers by vectors in a 4-space.
Conversely, the ordinary description of physical systems in the 4-space by 4-vectors
and 6-vectors can be transformed into a description by E-numbers. That is to say,
following the quaternion device of expressing a vector as a linear function of its com-
ponents, we can now identify the symbolic coefficients with symbols of an E-frame,
as suggested in (53-1). Provided that we can distinguish mechanical and electrical
4-vectors, the appropriate symbols can be found at once from (56-7). The essential point
is that the ordinary relativistic properties of physical systems for rotations in the
4-gpace are now contained in the equivalence of E-frames, the relativistic rotations
of special relativity theory being a selection (56-6) from the general rotations ¢(...)g
which transform an E-frame into an equivalent frame.

The E-frame is a construct of pure mathematics, and we are free to use it in physies
in any way that seems likely to be useful. We are now able to define the particular
application that we intend to follow up. The E-frame will be brought into physics by
dentifying the 4-space (associated with it tn the way defined above) with space-time.

By this step we ‘anchor’ the E-frame in observational physics. A great many detailg
remain to be elaborated in the course of the development of the theory. Our starting
point is that, when physical space-time is rid of the inessentials which embellish

EFT 8
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it in our ordinary conception, all that remains to describe is the structure of its
relativistic transformations. The E-frame provides a symbolism for formulating this
structure.

By way of contrast with rotations, it is useful to consider the transformation ¢(...) g,
which we shall call a pseudo-rotation.> A pseudo-rotation g = etuwl gives instead of
(56-22), ,

Bie = By . . } (56:8)
E, = E,(cosf+B,sinb) = E,, cos0+eE,,sin a,
where g, v, 0, T, A, 0 18 an even (0odd) permutation of 0, 1, 2, 3, 4, 5 for a right- (left-)
banded frame. It follows as in (56-42) that

Pus = Ppas  Por = P, ©08 0+ P}, 8in 0. (56-91)
For example, a pseudo-rotation e#¥x? gives in a right-handed frame,
Por = Doy €08 O +ipissind,  1pys = 145 008 8 — pgy sin 0. (56-92)

Pseudo-rotations are therefore complementary to rotations, each connecting in formal
rotation the pairs of components that the other leaves unconnected. A pseudo-rotation
rotates antiperpendicular components; the symbols of the two components and the
pseudo-rotation connecting them form an anti-triad.

If we make the transformation £, = ¢¥, ¢, the symbols £, do not satisfy the multi-
plication table (53:4), and the frame 1s therefore intrinsically different from the
E-frame. Thus pseudo-rotations are not relativistic transformations. That does not
mean that they are of minor importance in physics. A pseudo-rotation is a strain; and
the representation as a transformation ¢(...)q provides a basis for the systematic
clagsification of strains.

The most general infinitesimal rotation is given by ¢ = 1+ 146 = 149, where 4O
is any infinitesimal E-number. This is resolvable into simple rotations 1%, ete.
We cannot, in general, resolve a finite rotation quite in this way; because the usual
law of combination of exponentials is not valid when the symbols do not commute.
The most general finite rotation ¢(...)g* can be resolved into a successton of simple
rotations, the order of their application being indicated. We need not dwell further on
this, because the non-commutation of rotations is familiar in elementary geometry;
and it is the same property that we here meet with in symbolie form.

57. Five-dimensional theory

The analysis of P into two 4-vectors, a 6-vector and two invariants corresponds to
the usual representation of physical systems in space-time. Representation in space-
time implicitly excludes rotations which do not transform space-time into itself; for
that reason the transformations of the vectors in (56-7) are limited to the 6 rotations
(56-6) which correspond to purely internal rotations of space-time. A rotation such as
q = etFu? would mix up the sets of components (a), (b), (¢) which in four-dimensional
theory form entirely distinct vectors. To exhibit a more extended range of relativistie

s This is called an ‘antiperpendicular rotation’ in Protons and Electrons, but I now prefer a terminology
which malkes it clear that it is not a rotation.
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transformation, we must adopt a five-dimensional representation of physical variates.
Then P breaks up into '

(@) & 3-vector, composed of electrical components py;, Doz, Pos: Pos Poss

(b) & 10-vector (analogue of a 6-vector in four dimensions), composed of
the 10 mechanical components,

(¢) an invariant (electrical) p,,.

(567-1)

- In thisrepresentation there are 10 independent relativity rotations in the 10 coordinate
planes of the 5-space, the associated symbols being

Ezs: E31, Elz’ Ew E24= E’34, E15= Ezs’ Ezs: E45- ' (57‘2)

To exhibit all 15 rotations we require a six-dimensional representation. The com-
ponents, other than p,,, form a 15-vector or antisymmetrical tensor of the second rank
in the 6-space. The components are associated with the 15 coordinate planes as are also
the independent rotations; so that in applying a rotation to P we are applying a
rotation to a rotation (or to something structurally equivalent to a rotation). This
identity of operator and operand is the characteristic of a ‘group’; so that we may say
briefly that the six-dimensional representation is a representation of the group-struc-
ture, the group of the E-symbols being the same as the rotation group in 6-space. The
ordinary vectors of the 6-space have no counterpart in the E-frame.

Beginning with the six-dimensional representation of the group-structure of the
E-frame, the symbols are associated initially with coordinate planes. Dropping one
dimension, 5 of the symbols are associated with coordinate axes, the other 10 being
associated with coordinate planes as before. This begins to be something like an ordinary
space; but it is to be noticed that, when it is compared with physical space there is an
inversion of mechanical and electrical characteristics. The symbols of the axes are the
electrical symbols B, (4 =1,2,...,5); and the vectors in the 5-space are electrical
vectors 2Ky, p,,; that is to say, they represent those properties of particles which are
dormant in a neutral uranoid. The relation of the 5-gpace to space-time is not simply
the addition of a dimension; it involves a change of the symbolic directions of the

axes from '
Eis, By, By, By to By, Boo, Bogy Bogy Byse (57-3)

The formal reason is that each pentad contains at least one electrical symbol (suffix 0);
so that we cannot extend the momentum vectors and conjugate position vectors of
ordinary mechanics to more than four dimensions.

The relation (57-3) is clarified if we distinguish tensors and tengor-densities in four
dimensions. In tensor calculus the measured volume dV and the coordinate volume dr
of a four-dimensional element are connected by dV = 4/(—g)dr or, as it is here more
appropriately written dV = i.Jgdr. In rectangular coordinates g = — 1, and the factor
4/—¢ can be omitted. But in symbolic theory the square root of —1 is not necessarily
+1; it may be an F-symbol. If we introduce a fifth dimension, d¥V becomes a vector
having the symbolic direction By of the fifth dimension; and this must be taken into
account in combining it, by multiplication, with tensors represented in five dimensions.
Since dr is by definition purely numerical, and is treated as an ordinary number in
integration, we have ,jg = + K.

8-2
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More formally, the four-dimensional volume element dV is the product of four
vectors represented symbolically by F  dx,, Eydx,, Edx,, E,dx,. By the muiti-
plication table #, g ¥y, Uiy By = Ey B, Thus (in a right-handed frame)

AV = i By da, doydo,dz,. | (57-4)
- Thus a vector P and its four-dimensional density § = P./—g are related by
P =Pill,,, P =Lil,, (67-5)

the second result being derived from the first by multiplying finally by i%,,. In par-
ticular, we have the correspondence

VP = By pi+ Boopo+ Egas+ Eoypy+ By ps, }
P = B9+ Bys 0o+ Eas ps + Eys py + By 15

Thus the ordinary momentum 4-vector p,, p,, ps, p,, which is a vector in the four-
dimensional mechanical frame Hyg, Ey, Hyy, By, is a vector-density in the five-dimen-
sional {rame By, By, By, By, Eo;. We notice that, although the complete expression
for P includes a component (with symbol £;) perpendicular to p,, p,, Py, P4, this is
not the component that appears as p; in the five-dimensional representation.

Since the relation (57-5) between P and % is reciproeal, it would be possible to inter-
change P and B in (57-6). That would give a different anchorage of the symbolic frame
in observational physics. We adopt (57-6) as it stands, because then the typical
4-vectors of physics (momentum vectors and position vectors) remain vectors in four-
dimensional symbolic theory; it would cause confusion of nomenclature if they became
veotor-densities when put into symbolic form. But it may be remarked that the
alternative anchorage is more logical if we wish to present the theory in purely dedue-
tive form, beginning with an E-frame and proceeding to find physical identifications
of the quantities derived from it. In that case we should begin with a pentad of five
axes By, and introduce 5-vectors P = 5, p,. We should then find that the momen-
tum and position 4-vectors (ordma.rlly so-called) are actually vector-densities in a
particular sub-space of four dimensions, the true vectors in that sub-space being
electrical.

{57-6)

58. Ineffective relativity transformations

It is important to understand clearly the function of relativity transformations. The
language of physics is such that two different descriptions may specify the same object
or condition. This is very natural, because we do in fact encounter different aspects
of the same object and describe it from those aspects. But, through generalisation and
gystematisation, multiplicity of description has been extennded much beyond the original
intention. It is regulated by a more or less systematic transformation theory, and
descriptions are introduced for the sake of completeness, although they could scarcely
arise from any imaginable agpect. It would not be possible to systematise observational
knowledge without this multiplicity of description; but it needs an antidote, because
much mystification results if we do not easily recognise that two descriptions are
equivalent. The antidote is a knowledge of relativity transformations, these being the
transformations which relate equivalent descriptions.

We shall call a relativity transformation effective if it relates two modes of deseription
in current use. If the transformation is ineffective it only means that the language of
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physies is not so redundant as it might have been. When we investigate relativity
transformations systematically, as in the theory of the rotations of the &-frame, effec-
tive and ineffective transformations are mixed togetherindis criminately. Thismayseem
an invitation to extend the terminology of physics so as to provide expression for the
results of transformations which, relative to the present terminology, are ineffective. But
that is a mathematical, rather than a physical, attitude. The physicist would scarcely
be well advised to extend the multiplicity of his deseriptions for no other purpose than
to give.more opportunity to the mathematician to remove the resulting mystification.

The common view is that there are six effective relativity rotations (three spatial
rotations and three Lorentz transformations), but this ig not a hard and fast rule
applying to all branches of physics. The distinctive property of these rotations is that
they transform flat space-time into itself; so that the descriptions, identified as equi-
valent by these transformations, are descriptions of objects and conditions in the
same flat space-time. But already our descriptions have been foreed to transcend flat
space-time in two ways. The extraordinary fluctuation has introduced (as an alterna-
tive to the more radical complication of curvature) an extra phase dimension. The
suffixing of particles has introduced extra-spatial interchange circulation. We have
thesefore to recognise equivalences of descriptions over a wider field than that com-
prised in space-time representation, and this gives scope for others of the 15 relativity
rotations of the frame to become effective. At the same time the three Lorentz trans-
formations become ineffective in statistical physics; for we have seen that the time
coordinate is differentiated from the space coordinates at the outset of the study of
probability distributions. The curious insistence on introducing Lorentz transforma-
tions, which. appears so often in the literature of quantum theory, is an example of the
introduction of mystification which can have no other purpose than to give the
mathematician an opportunity of removing it.

Our attitude s that there is no general principle by which we can decide once for all
which of the rotations are effective. I may, however, say in anticipation that normally
in microscopic theory the new effective rotations compensate for the loss of the Lorentz
transformations; so that there are six effective rotations which have close analogy
with, but are not identical with, the six rotations of molar space-time. One of the uges
of the E-frame is to show how the molar and mieroscopic systems of relativity trans-
formation are related.

No apology is needed for the ineffectiveness of a rotation; it could be made effective
by extending our terminology, but it is judged not worth while to do so. It may
seem rather a fiasco that we should introduce an E-frame providing a considerable
increase in the number of relativity rotations only to find that most of the increase is
ineffective. But that is a misunderstanding. Itis not the relativity rotations, but the
strains that we are afer. The recognition of equivalence of description is a clearing of
the ground. It is when we come to the strains that positive construction begins.

59, Strain vectors

When P represents a quantity distributed over a region of space, we usually have to
consider the density of P rather than P itself. The density of a vector in the three-
dimensional space &, Z,, z3 will be called a strasn vecior. A distinctive name is required
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because the term vector-density in tensor calculus refers to the density in a four-
dimensional element.

The reciprocal ¥ of a three-dimensional volume element is a 4-vector which, for
a volume of the space 2, #,, 3, is in the z, direction. Moreover, in natural units, it is a
momentum vector, and it has entered into our theory as such. It has therefore the same
symbolic coefficient &, as the p, component of a momentum vector, and we can write

V1= xEyvT,
where v is a number. The density of P, when distributed over V, is accordingly
1 PE,;v~1. Thus a strain vector has the form PE,,, where &, is the symbol associated

with the time axis.
The strain vector § corresponding to a vector P is defined by

S = — PE,,. ‘ (59-1)

Both the sign and the order of the factors P, K, are conventional. Multiplying (59-1)
finall

ally by Hy;, we have P = 8B, (659-2)

Then P is the quantity in a unit volume which corresponds to the density §.
Setting P = X p,, 8 = 2K, s,, (59-1} gives the following relation between the
components:*

Momentum 4-vector: )

) P15) Pas» Pas: Pas = — S1a0 — Sagy — 83y 1535,
Spin 6-vector:

Pass Ps1> P12> Pias Pagr Paa = 18015 V89, ¥503s S155 Sons Sg5s [ (59-3)

Electrical componenis:

Por> Poz» Pos> Poa» Pos» Pre = 1823, 1851, 1512, So5; = Soar 845-

Inmolar theory there is an alternative definition of a three-dimensional volume which

may be called the ordered volume. The ordered volume contained by three orthogonal
linear elements d'z,, d’z,, d°z, igh

V, = ¢, &, d%,d%,, (59-41)

where e, is the well-known alternating operator. If the elements have the directions
of the three space axes, they are represented by E,d'x,, K, d?x,, By d®x;, and (659-41)

reduces to V, = €ya50 Frg Bog Bos @, 2, 0%, = Hyg Byyv. (59-42)

Thus the ordered volume has a symbolic coefficient 15, instead of the coefficient
+ E,; found for V. The difference is explained by reference to ordinary tensor calculus
where it is shown that the ordered volume is strictly, not a vector, but a ‘vector-
volume’ V,/,/—g.¢ By comparison we obtain $Fy\/—g =  Hy;; so that \/—g = £ iHy,
agresing with § 57.

This treatment exhibits the connection between the chirality of the Z-frame and the
chirality of a set of rectangular axes. It is assumed in (59-42) that the order of multi-
plication of the elements is the order of the axes along which they are directed. If this

3 We have written 7 for H,5. In future all formulae containing 4 are given for a right-handed frame,

unless otherwise stated.
b We use the summation convention ternporarily.

¢ Mathematical Theory of Relativity, 2nd ed. p. 244,
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is changed from a right-handed to a left-handed sequence, the sign of V, is reversed.
Thesign of the right-hand side of (59-42) is reversed by changing B, from i to — 4, i.e. by
reversing the chirality of the frame. Thus reversing the chirality of the #-frame is
equivalent to reversing the chirality of the axes associated with it,

The special importance of strain vectors is that they form an intermediate step
betweent the purely abstract ‘problem of one particle’ and the realistic but com-
plicated problem of a system of particles. A single particle in a, geometrical or algebraic
frame affords nothing observable; we have to deal with it as an auxiliary conception,
but we want to pass on as quickly as possible to something that has the semblance of
an observable system.

Irrespective of the constitution of the rest of the system, a radical change of con-
ception occurs when a particle is considered ag part of a system. A system introduces
the concept of stmultaneity. Bach particle has its own space-coordinates; but there is
only one time coordinate, which is in the direction of the resultant momentum vector
of the system. Anticipating that in any observational problem the particle will be part
of a system, in which a time axis and a corresponding simultaneous space will be defined
independently of the particle itself, we consider P in conjunction with this independent
time direction which we represent by the symbol B,,. The strain voctor & — —~ PE,,
arises out of this association. To understand the relation of § to P, consider the motion
of the particle in the «, direction which is specified by the momentum component
Ey5p15. This could be eliminated by a Lorentz transformation in the plane #,,. But,
since our time axis has already been fixed by other considerations, this\rota,tion is
inhibited. The ‘system’, composed of the particle together with the source of the fixed
time direction, differs intrinsically from—is strained in comparison With—j system in
which p,; = 0. The nature of the strain is appropriately specified by the inhibited
rotation which would have removed it, and has therefore the symbolic coefficient E,,
of the inhibited rotation. This is the strain vector mode of description, in which a strain
comeponent E,,s,, takes the place of a momentum component Z;p,.. By (59:3) we
have is,, = py, the ¢ indicating that the inhibited rotation is hyperbolic.

The passage from vector to strain vector description corresponds to a changed con-
ception of motion. Instead of heing an unobservable relation of the particle to a mathe-
matical reference frame, it is an observable deformation of a, Physical system in which
the particle is contained.

When we describe the momentum strain vector & as the three-dimensional density
of the momentum vector P, we refer to tensor character, not to dimensions. By (59:1),
S and P have the same dimensions. Normally 8 is the quantity directly defined, so
that § and P both have the dimensions of a momentum-density or mass-density; so
that in this way we introduce ‘momentum vectors’ which have the dimensions of
energy tensor and ‘masses’ which have the dimensions of densities. Tt is, of course,
the dimensions, not the tensor character, that determine the transformation due to
‘a change of extraneous standard. This helps us to understand the anomaly in § 26, etc.,
where the mass m,, & of scale-free particles transforms as densities. In a pseudo-
diserete assemblage the unidentified individual particle must from the start be
considered as part of a system; so that strain vector description is prior to vector
description. If P is introduced, it is derived by (59-1) from the strain vector which
represents the density, and retains the dimensions of density.
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60. Real and imaginary E-symbols

The multiplication. table (53-4) shows at once that some of the E-symbols must be
real and some imaginary. Let us examine the most general way in which real or
imaginary character can be assigned to them consistently with the multiplication table.
Let E,, be one of the real symbols. It can be proved by reductio ad absurdum that
not all the 8 symbols which anticommmute with £, are imaginary. Accordingly let
Eyy, Ey3be real symbols; then their product &, is also real. Turning to the conjugate
triad, two cases arise: (a) all 3 symbols are real, or (b) one symbol, say E, is real,
and K, E,, are imaginary.

In case {a) we find that the remaining 10 symbols are imaginary. Since each of the
6 pentads contains 2 members of the real triad-pair By, By, By, By, By, By a
pentad always contains 2 real and 3 imaginary symbols. In case (&) we find, by
multiplying the triad-pair by the real symbol Ey;, that Ey,, By, By, By, Eos, B ave
imaginary; the other symbols are real. There are therefore two possible systems of
agsignment:

System. {a), 6 real and 10 imaginary symbols. The real symbols form a pair of
conjugate triads. Each pentad has 2 real and 3 imaginary symbols.

System (b), 10 real and 6 imaginary symbols. The imaginary symbols form a pentad
together with Fy,.

In saying that the E-frame consists of real and imaginary symbols with a character-
distribution given either by (a) or (5), we do not go beyond the original definition of
the E-symbols as a set of elements satisfying a certain multiplication table. But in
practical application it is scarcely possible to leave the choice between (a) and (b)
undecided. If we choose one or other system, it is no longer true to say that we regard
the E-symbols as having no properties other than those stated in, or derivable from,
their multiplication table. The choice introduces an additional property of the symbols,
which can only be justified fundamentally by deepening our foundations. We must
give the E-frame a pre-history, which shows how the property originates. For the
most part we regard the pre-history of the #-frame as an epistemological prologue to
physics, which is segregated from the main development of fundamental theory and
dealt with in Chapter X1, But here it is necessary to go one step further back.

Consider a pair of conjugate triads £ ,, £,,, &, ,, £, &, ,, B ,,, and let
&1 Cor &3 = Epw B, Ea‘,u? 617 02! 63 = iy, E):.p’ Ep-r' (60-1)

Tt will be found that the complete set of £, is given by
gcc:' 6&7 igo;@ﬂa ?;- i (60‘2)

The symbols &, §,, {; are anticommuting square roots of —1, each of which is the
product of the other two. Introducing an algebraic symbol {, = 1, we call a linear
function a,& 1,8+ a3¢3+a,L, with numerical coefficients (real or complex) a
{-number. The {-numbers form a closed algebra. Similarly we have a closed algebra
of #-numbers, which is homomorphic with and commutes with the {-algebra. The
expression (60-2) for the complete set of &, shows that the algebra of E-numbers is
the ‘ direct product’ (outer product) of the {- and f-algebras; or, since the latter algebras
are identical, it is the direct square of the {-algebra.
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The S-algebra (which is Hamilton’s quaternion algebra) is the simplest possible non-
commuting algebra. For, if there exist two anticommuting elements ¢, ,, their product
s necessarily anticommutes with both and provides the third linearly independent
element needed to complete the algebra. The E-algebra, being its direct square, is
the next simplest non-commuting algebra.

A {-number with real coefficients a,, @,, a4, a, will be called a real {-number. The real
{-numbers form a closed algebra, called the real {-algebra. The direct square of the
real {-algebra gives a closed algebra of real H-numbers

ZE.p, = Za,,8.0p (x.f=1,23,4), {60-3)

with real coefficient @, By (60-2), p, is real for the 6 symbols of the triad-pair,
and imaginary for the other 10 symbols. This implies that By By B,y By By B,
are to be counted as real symbols, the other 10 symbols being imaginary. This is the
- distribution which we have called system (a).

Imaginary numbers are unknown in experimental physics. If they abound in
theoretical physics, it is because the theorist has at some stage in the collation and
systematisation of observational data made a definite departure which introduces
them. Yf not already present, they are introduced by the definition of the E-symbols
in (60-2); and the imaginary character of certain of the F-symbols is due to the factor
¢ which appears explicitly in their definition.

By this deepening of the foundation our theory now rests on a ¢-algebra which is
not so much ‘real’ as ‘characterless’. Tts reality is unsophisticated, because it precedes
the use of complex numbers in the subject. The resulting reality system of the £-frame
i system (z). I do not think there is any alternative foundation which would give
system (b). At any rate we shall adopt system (), and commit ourselves to the foregoing
pre-history of the E-frame employed in our investigations.

System (a) has another property of considerable theoretical importance. There exists
& representation of F-numbers by fourfold matrices (§71). The representation is said
to bea ‘true’ representation, if real B-numbers are represented by wholly real matrices,
and imaginary H-numbers by wholly imaginary matrices. It can be proved that a
pentad eomposed of matrices which are wholly real or wholly imaginary contains two
real and three imaginary matrices. Thus true representation is possible if we adopt
gystem (@), but not if we adopt system (b).
© Adopting system (a), we arrange the notation of the suffixes so that the scheme is

real symbols, By, By, Ery, By Eys, By, } (60-4)
imaginary symbols, Ky, By, By, By, By, By, By, By, Bys, B
Equation (60-1) then becomes
$ Cor & = By, By, Brg, 04, 0y, 6y = By, By, By (60-5)

We have found that arotation ¢(...) ¢~ gives an. E'-frame equivalent to the F-frame.
But an additional property has now been given to the symbols, and for full equivalence
of the frames it is necessary that &, should have the same real or imaginary character
as E,. If a rotation ¢ = et%w? is applied to E,,, we have B, = E,¢% so that the



122 Fundamental Theory

character is not preserved unless ¢* is real. Except for the special value 6 = 90°,
g cannoct be a pure imaginary. Thus

For the group of rotations which give full equivalence, q is real. (60-6)

If, in the application of the E-frame to physics, any physical interpretation is given
to the real or imaginary character of the K, relativistic equivalence must be identified
with full equivalence. It will therefore be a condition for relativity rofation that
q is real.

61. Reality conditions

The representation of physically real characteristics by imaginary or complex
numbers is a common device in elementary physics. When the quantity so represented
has a probability distribution, certain restrietions must be imposed. Consider, for
example, the complefe momentum vector. To define its 10 components p, in such a
way that only real numbers are used would be a harassing regulation. On the other
hand, if they are unrestrictedly complex, the domain of probability distribution is
extended from 10 to 20 dimensions—which is not at all our intention. To avoid this
the use of complex numbers is controlled by ‘reality conditions’. Reality conditions
are formally similar to stabilising conditions, which reduce the domain of probability
distribution to a locus of fewer dimensions than the mathematical representation space.
Usually, but not necessarily, they have the simple form that certain specified com-
ponents are real and other specified components are imaginary.

When we speak of ‘reality conditions’ the term refers to physical reality which, as
we have just seen, is not usually congruent with mathematical reality of the repre-
sentative gymbols. The basis of our determination of reality conditions will be that
physical reality is invariant for relativity rotations; since there can be no intrinsic
equivalence between structures which are physically real and those which are not.
This is, of course, subject to the proviso that the rotations are themselves physically
real. Thus our first step must be to determine the reality conditions for rotations.
Evidently the physically real rotations must form a closed group—a subgroup of the
group of mathematical rotations.

Whatever the realiby condition for rotations may be, it can be stated in the form
that the physically real simple rotations are ¢ = et¥mew?, where 8 is real, and «,, is a
certain array of complex numbers of modulus 1. The «,, are independent of 0, since a
large rotation can be divided into a succession of small rotations.

If @ is a small quantity whose cube is neglected, we obtain

3B urtuo A Erotusd ¢—4E po el -3 Bug0yol — B puduovt®, (61-1)

3

The left-hand side is a succession of real rotations; therefore e*Eav®uc%ve®® ig a real
rotation and, by the rea]ity condition, &, a,, = + «,. By repeated application of this

result
’ “m“ = +oc 0 Opg Lrg Oy = £ 00y, 0y = T, (61-2)

so that a2, = + 1 and «,, = + 1 or *4. The sign has no significance, and the physically
real rotations are accordingly determined by a set of characters «,,, = 1 or 4 associated
with the %,..
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The real or imaginary character of symbols themselves may be similarly described
by aset of characters £,, = 1 ori. Then B,, 5,, is always real; and by (60+6) the rotations
which give full equivalence are ¢ = e*Zufu?, Tt is evident that the rotations which
give tull equivalence must be identified with the physically real rotations, so that
B = &, This is a matter of definition rather than of deduction, and does not admit

“of direct proof. Previously the symbolic frame has been anchored in a generalised
universe in which ‘measurements’ are not restricted to real numbers ; and we are now
introducing a tighter anchorage in a physically real world. All that we can be expected
to show is that the anchorage condition g w» = Oy, 18 Necessary to prevent the physics
and the mathematics getting to cross-purposes. By rigorous deduction the choice
has been narroted so that in a given plane there are only two rotations with characters
1 and ¢ to be considered. It is only reasonable to choose the mathematical repre-
sentation so that full mathematical equivalence corresponds to real physical equi-
valence, rather than the direct opposite.

Accordingly (60-6) applies to the physically real rotations:

A rotation ¢(...) g is physically real if q is real, (61-3)

52. Distinction between space and time

An expression which is wholly real or wholly imaginary will be called monothetic.
Two expressions will be called homothetic if both are real or both imaginary, and anti-
thetic if one is real and the other imaginary.,

When the angle of a rotation is imaginary we shall denote it by 4u; so that by (61-3)
the real relativity rotations are q = etEu0 or et#uiv according as I, is real or imaginary,
Consider two perpendicular components p wor Pyor I B, E,, are homothetic, their
product £, is real; and the rotation et€w? gives a circular rotation of Pue and p,_ as
shown in (56-42). If B, E,, are antithetic, E,, is imaginary, and the rotation etZumiu
gives p,, = P, 008 (i) + P, sin (fu), p,, = — P8I0 (402) + 0, cOs (), or

Pyo = Ppocoshu+ip) sinhu, ip,, = p), sinhu+ip]_ coshu, (62-1)

which is & hyperbolic rotation between p po 30d ip,, (or between ip,, and —p, ).

Thus the real E, give circular relativity rotations, and the imaginary &, give
hyperbolic relativity rotations.

We can now determine the reality conditions for the components p, of a vector by
applying the condition that physieal reality is invariant for relativity rotations?
Thus p,, and p), must satisfy the same reality condition. For the eircular rotation
(56-42) this requires that p,, and p,, shall be homothetic; for the hyperbolic rotation
(62-1) it requires that p,,. and p,, shall be antithetic. Both cases are covered by the
condition that &, ,p,, and B, p,, are homothetic. This gives the general reality con-
dition for a vector, namely, that all its symbolic terms E,p, are homothetic with the
possible exception of £,4p,,. It is here assumed that all the components are connected
(directly or indirectly) by effective relativity rotations. The modification when some
of the rotations are ineffective will be examined later.

Since a pentad consists of three imaginary and two real symbols, not more than three
mutually perpendicular components can have homothetic symbols; so that there

¢ ‘Relativity rotation’ will henceforth mesn physically real rotation. Rotations which are not physie-
ally real may be described as formal relativity rotations.



124 Fundamental Theory

cannot be more than three mutually perpendicular directions connected by circular
rotations. ‘Space’, defined as a domain in which the relativity rotations are circular,
is accordingly restricted to three dimensions. If we extend this domain to four dimen-
sions, the fourth axis must be connected with the other three by hyperbolic rotations
{Lorentz transformations); in other words, it is a time axis.

The three-dimensionality.of space, and the time-like character of the fourth dimen-
sion are thus deduced directly from the properties of the E-frame. To what extent this
amounts to an g priori proof that the space-time of physical experience must be of
this kind, depends on our inquiry into the ultimate origin of the #-frame in Chapter
x1x. Here we would emphasise that, independently of epistemological considerations,
the result is a substantial contribution to the unification of physies; for the F-symbols
were originally introduced into physics as an instrument of quantum theory.

We accordingly associate,three imaginary symbols E,;, £,;, Ey; with the space axes
and a real symbol E, with the time axis. (The suffix 0 is avoided, because it has been
reserved in (55-7) for distinctively electrical characteristics.) The symbols B,,, #,,, Fy,
giving the circular spatial rotations are real, and E,,, E,,, #,;, giving the Lorentz
transformations are imaginary, as the foregoing analysis requires. The notation agrees
with (53-1), and justifies the use of E-symbols as coefficients in that formula.

The position 4-vector and momentum 4-vector are denoted by

: . . . 62-2
P = Byyipy+ Bogipy+ Bz tpg 1 Hys e, ( )

where x,, Ty, 5, t and p,, Pa, Ps, € are real numbers. As here defined X and P are real.
This is a convention, because the reality conditions only state that X and P are mono-
thetic. The opposite convention, which takes X and P to be imaginary, is probably
more familiar. But it is clearly more fitting that the real numbers which have absolute
distinction of sign should be used to represent time components which have distinctive
directions towards future and past; that the imaginary numbers whose sign is reversible
should represent space components which have no one-way property.

Having marked out in the actual world a Lorentz frame of three rectangular axes
and a corresponding time, we label the positive directions of these axes F i, E, 1,
Eyt, E,;. These directions will be called a ‘realisation’ of the four symbols attached to
them. The angular directions of relativity rotation of the Lorentz frame likewise supply
a realisation of the symbols E,y, By, Hi,, Hyiyt, Eoyt, Eyi. We have then a physical
interpretation of the ten components forming the mechanical part P, of a vector P,
namely, as magnitudes associated with linear or angular directions marked out in the
actual world. There is no separate realisation of the symbol 4; it occurs only as part of
. & realised symbol. Thus physical interpretation is only provided for real magnitudes
associated with the realised symbols; e.g. H iz, F,;0 can only be interpreted if z
and @ are real. Tt follows immediately that in order to have a physical interpretation
P, must be wholly real. In other words the reality condition for P, is that P, must be
real; for reality conditions are conditions necessary to secure that an expression has
& physical interpretation. -

The electrical 4-vector must be monothetic, since its components are connected by
effective relativity rotations; but we cannot immediately decide whether it is homo-
thetic with P, or antithetic. This very important question will be treated in the next



The Complete Momentum Vector 125

section. The complication is that in standard conditions electrical components are
dormantIA dormant vector is not expected to have a physical interpretation: and we
cannot apply to it the ordinary reality condition which is intended to secure that a
vector shall have a physical interpretation !

63. Neutral space-time

The E-frame provides a fifth direction perpendicular to the axes 2y, Ty, X4, £; and the
position vector (62-2) can be extended to

where according to the reality conditions £, should be real. In molar relativity theory
space-time, i.e. the domain in which the particles of the uranoid are located, is a
four-dimensional locus in a Euclidean representation space of five dimensions. It is
tempting to identify ¢, with the fifth coordinate in the representation space; but the
interpretation turns out to be not so simple.

Take as origin a point P in the spherical space, and let W be the tangent flat space
at P containing the axes z,, #,, #;. Then if the suggested identification is correct, the
centre of curvature is on the axis £,; and, for all points in the neighbourhood of P, to
has the same sign, say positive. In particular, the position vector of any uranoid particle
in the neighbourhood of P will have a positive component #,. :

Now construet a second uranoid according to the same specification in a chirally
opposite frame; so that the two uranoids are similar but chirally opposite. The position
vector of the corresponding particle in the second uranoid is obtained by reversing the
sign of the term Hy#, in (63-1). Thus, when both uranoids are referred to the same
frame E,, ¢, is changed to —#,. Thus the chirally opposite uranoids are on opposite
sides of the tangent plane W. But this is impossible because they are precisely the same
uranoid; a uranoid, being electrically neutral, is its own chiral opposite. By definition
it would be unaffected by interchanging positive and negative charge.

The neutral uranoid (or the space which it occupies) cannot be curved either in the
positive or in the negative direction of the #, axis, because such curvature represents
a condition biased as between positive and negative charges. If it hasa property which
can be legitimately represented as curvature in a direction perpendicular to the
~ space-time axes, this direction must be represented symbolically by By B, for
Hys By, being the product of two chiral symbols, is not altered by reversing the chirality,
and it is perpendicular to (anticommutes with) E,;, ete. Denoting the coordinate in
the £y B direction by #,, the fifth term in the position vector is Ey B\ xy. Or, adopting
as usual a right-handed frame, the position vector is ‘

X = By + Bogicty + Byging + Byt + Byg iy, (63-2)
with @, x,, 2, ¢, , real.

T'wo important consequences arise. Since B, like By, is real, its rotations with the
space axes are hyperbolic, and the corresponding coordinate £, is time-like. But in
(63-2) we have substituted iz, for #y; so that x, is formally an imaginary time, or equi-
valently a real space-like coordinate. The radius of curvature R, of the neutral uranoid

is accordingly space-like, as assumed in molar relativity theory and confirmed by the
observational comparisons of the constants into which it enters. Thus the E-frame
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predicts correctly the character of the curvature as well as the {3 + 1)-dimensional
structure of space-time.

Secondly, since x; and x, are both space-like the rotation between them is circular,
and is given by ¢ = ¢*Ea’ with 0 real. But, since E; is imaginary, this is a formal, not
a real, relativity rotation; and the equivalence between lengths in and normal to space
is formal, not physical. The fifth dimension used to represent curvature is & formal
construct, and there is no physical extension of space in that direction, Thus a distine-
tion obvious to common experience is correctly shown in the symbolic representation,

As a theoretical exercise we might vonsider a monochiral wranoid composed of
elementary particles all of one sign. This would naturally be the simplest system to
construct in a chiral #-frame; and the originally suggested position vector (63-1)
applies to it. If it could be confined to a four-dimensional locus, it would have a time-
like radius of curvature in the real ¥ direction, which changes from positive to negative
when the sign of the charges is reversed. But the fifth dimension has real relativity
rotations with the other dimensiofis; so that the monochiral uranoid occupies a
three-dimensional space and a two-dimensional time.

Anything like the conditions of a monochiral uranoid is utterly beyond experience,
and we need not be surprised at the scarcely imaginable results, e.g. the two-dimensional
time. Molar matter, even when gaid to be ‘highly charged’ is electrically neutral to
an excessively high approximation as judged by the natural criterion, namely, the ratio
of the number of protons to the number of electrons contained in it; a disparity of 1 in
10'° is outside reasonable possibility. Thus only faint vestiges of chirality penetrate
into molar physics; and our ideas of space and time measurement are based on neutral
(Riemannian) space-time. In the elementary particles of microscopic physics we meet
for the first time chirality which is not excessively diluted.

. Tt is easily calculated that an inequality of 1 in 10%®® in the number of protons and
electrons in the uranoid would give a potential everywhere of 550,000 volts. In a region
where this potential actually occurs the conditions ean be regarded as 10-3° of the way
from a neutral to a monochiral uranoid; and. the radius of curvature is tilted through
an angle 10— out of the standard direction corresponding to potential zero. The tilt,
being a pseudo-rofation (since there is no rotation ¢(...)g~* between By F; and Z;),
is interpreted as a strain; and the potential measures this particular strain in the
environment. Our usual procedure is to treat an actual environment as a standard
uranoid plus a disturbance; and the two components of the curvature then become
separated. The electrical part P, of the momentum vector has no physical interpretation
in the standard uranoid; buf it has a physical interpretation in the added chiral dis-
turbance. When we speak of a characteristic as physically significant, we mean that
it can be detected by its interaction with an appropriate test-body. For the isolated
carrier of a momentum vector the test-body is the environment. The foregoing result
agrees with our common experience that different test-bodies are required for P,
and P,

Itis now clear that the ‘reality conditions’ for F, are the conditions that it shall have
physical significance in a chiral environment but not in an achiral environment, and
the reality conditions for P, are the conditions that it shall have physical significance
in an achiral, but not in a chiral environment. Using the component Ey,z,, of the
position vector as a test, we see by (63-1) and (63-2) that the conditions for phyéical
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significance in the two environments are antithetic, Thus the reality condition for a
vector P in the standard environment is

The electrical part P, is antithetic to the mechanical part F,,. (63-3)

By our convention P, isreal and F,imaginary. An alternative, and more formal deriva-
tion of this condition will be given in the next section.

The strain vector § = — PZ,; will be physically real if P is real. This also can be
divided into mechanical and electrical parts 8, = —F, By, 8, = —F, Hy; and the
reality condition requires S, and S, to be antithetic. This condition can be put in a
simpler form. The components s, of §,, and 8, are shown separately in (59-3); and we
see that the electrical part corresponds to the six real £, and the mechanical part to
the ten imaginary E,. Thus the antithesis of S,, and §, is provided for in the symbolic
coefficients, and the components s, are all homothetic. The convention makes them
imaginary:

The reality condition for a strain vector is that all the componenis s, are imaginary.
' (63-4)

The antithesis in {63:3) has a simple physical explanation. In ordinary units the
dimensions of electric charge e are irrational; we cannot express ¢ in terms of the
standard M, L, 7 but we can express e?. The regult of any actual measurement must be
areal number; but formally we may describe by a symbol the ‘ratio’ of two quantities
which are not experimentally comparable. Thus the ratio of an electric charge to our
mechanical standard may be expressed by a symbol, but not by a real number. But the
square of the symbol must be a real number since ¢? is experimentally comparable with
the standard. This is satisfied by taking the charge to be an imaginary number in terms
of the mechanical standard. We have therefore two standards whose ratio is repre-
sented by the symbol 7 or E,,; and the antithesis of , and F, means that the one part
in order to be physically real must be experimentally comparable with the standard 1
and the other part with the standard ¢. The dormancy of F, is due to the fact that the
standard environment defines only the former standard.

64. Congruent spaces

According to the previous section, reality conditions depend on the environment;
so that, for example, we postulate a standard neutral uranoid when we formulate the
conditions (63:3) and (63-4). This is reasonable, because a physical structure which is
possible in one environment may be impossible in another. Reality conditions are, in
fact, disguised boundary conditions, which have a simple form because we consider
only simple environments. The disguise is that they ostensibly relate the physically
possible vectors to a symbolie or geometrical frame instead of to the environment;
but, by pre-arrangement, the frame forms a compendium of the properties of the
environment, so that it comes to the same thing. The treatment therefore depends on
a congruence of the properties (symmetry and chirality) of the frame and environment,
which makes the frame, in effect, a symbolisation of the environment and the environ-
ment a realisation of the frame.

The complication is that the uranoid which completely realises an E-frame is
monochiral—a distribution extravagantly remote from experience. The neutral uranocid

. ;lng‘%‘

.
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realises only the mechanical part of the E-frame. In the actual universe the most we
can do is to introduce an extremely dilute chirality into the environment: but this is
treated (as usual) as a superposition on the standard neutral environment—an electro-
magnetic object-field—and does not modify the relation of the frame and standard
environment. The chiral part of an electron inserted in the neutral space-time deter-
mined by an equal mixture of electrons and protons is not related to the frame in the
same way as the chiral part of an electron inserted in a universe composed wholly of
electrons. It is easy to determine the latter relation, but it is the former that is required
in physics.

This is elucidated by reference to §57. We begin with a 5-space (3-space + 2-time)
with rectangular axes which are realisations of Ky, Eq,, By,, By, Bys® This corresponds
to a monochiral uranoid. The axes give realisation of the chiral symbols and the
angular directions in the coordinate planes give realisations of the mechanical symbols.
We have next to reduce this to a neutral space-time. Conceptually we shall regard this
as the same space, except for the dropping of a dimension; so that the geometrical axes
remain fixed, but are now realisations of £y;, Byy, Hyy, Ey;. More precisely, we regard
the new space as a superposition of two opposite chiral spaces; for it would be self-
contradictory to regard a neutral space and a chiral space as the same. When the two
opposite 5-spaces are superposed, the realisations of their %, axes have opposite
directions; and we cannot identify the realisation of E,; in the new space with both.
We must identify it with the realisation of K, &, which does not change sign on
reversing chirality. Similarly the realisation of ;4 in neutral space must be identified
with the realisation of By ;4 in the chiral spaces. There is no other way, because we
have not provided any separate realisation of E,; or <. The result is that the axes in
the 4-space and in the 5-space, which are conceived as geometrically congruent, have
antithetic symbols. In the right-handed 5-space the axes are realisations of E,, By,
Boys Bogts Host, the first four being congruent with the realisations of B¢, Ey; i, Bygt, B,
in a Lorentz frame.

Primarily this implies that in passing from four to five dimensions we have to uproot
and re-anchor the symbolic frame with respect to the geometrical axes; but we have
found a simpler way of making the change by identifying the vectors P® in five
dimensions with imaginary vector-densities i8® in four dimensions. Thus by con-
sidering vectors and vector-densities together we combine the two representations in
one. This was shown in (57-6). The new point is that the position 5-vectors (and corre-
spondingly the momentum 5-vectors) are imaginary, in contrast to the position and
momentum 4-vectors in space-time which are real. These 5-vectors are introduced into
space-time as vector-densities i¥f; since P is homothetic with 4%, the corresponding
vectors P are imaginary. Thus the vectors introduced into space-time from five
dimensions are antithetic to the native vectors.

Returning to the 5-space, the rotation between axes E;, B, ... is the same as between
By Erg, Ligg g, -..; 80 that the foregoing anomaly affects only the 5-vector and not the
other ten components. The 10-vector in 5-space is real, and remaing real when intro-
duced into space-time.

There is no confusion between native and imported vectors. The ten mechanical
components are real, and are represented (in different ways) either in 5-space or in

- & Bubject to the insertion of appropriate ¢ factors, to be determined later.
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neutral 4-space. There are no native electrical components, since such components
would be meaningless in a neutral environment. Thus, when the mechanical momen-
tum vector (complete momentum vector) is extended to include electrical components,
these have to be imported; and it is the imported addition that is antithetic to the rest.

The essential step in the foregoing deduction is the setting up of a geometrical con-
gruence of the axes B ¢ and Ey F,.¢. This gets over the difficulty of representing
neutral and monochiral environments in the same geometrical space—a representation
which is required when we treat an electric field as a superposition on a neutral uranoid.
The monochiral addition is a misfit in the neutral space-time, which it has had no share
in determining. But we have made congruent with the neutral space a space into which
it can be fitted by the recognised device of using imaginary as well as real axes.

65. Determinants and eigenvalues

We summarise for future reference some further definitions and results relating to
F-numbers. They are mogtly simple generalisations of definitions and results relating
to matrices, which are a special case of F-numbers (§71). Proofs are given in Protons
and Electrons, Chapters 1r, 111,

The determinant of an E-number is a certain homogeneous quartic function of its
components, namely -

det P = Zpi * 22@?&?5 + Szp;wpﬂrpvapw + S‘prvaplpplﬁ' (65'1)

In the second term the sign is positive if £, B, anticommute and negative if they com-
mute; in the fourth term the sign is positive or negative according as x, v, o, 7, A, p
form an even or odd permutation of 0, 1, 2, 3, 4, 5. It is understood that terms which
have two or more equivalent forms (e.g. P12P13PsaPas AN Pyy Pag P31 P3e) are included

once only.
The determinant has the property |
det (PQ) = det P det: Q. (65-2)
Also the condition that P is singular is
det P = 0. (65-3)
It follows from (65-2) that a product of E-numbers is singular if any one of them is
singular. '
By (65-1), det 1 = det B,;(—%) = 1. Hence det ¢~ detg = 1; so that
det P’ == det (gPg~!) = det g det P det g1 = det L. (65-41)
Thus the determinant is invariant for rotations. Also by (65-1},
det B, = 1, (65-42)
det (e*Exf) = 1, if p+186, (65-43)

Thus the determinant is also invariant for pseudo-rotations, except the pseudo-
rotation ¢ = etEuf,

If A is an algebraic number, det (P —A) is formed by substituting p,,+ A for py,
in (65-1). Thus the equation det (P—2) = 0 (65-51)

EFT 9
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is a quartic equation in A, which may be written as
JA)=(A—2,) (A= 2A5) (A—Ag) (A—2,) = 0. (65-52)

This is called the characteristic equation of P. It is an ordinary algebraic equation, but
there is a remarkable theorem (called the Hamilton-Cayley theorem in matrix theory)
that P satisfies its own characteristic equation; so that we have also a symbolic

equation F(P)= (P=2,) (P=25) (P—2) (P—2)) = 0. (65-53)
If X is a symbol of any kind, and ¢ is another symbol such that
X =ap ($=0), (65-6)

where a is an algebraic number, ¢ is called an esgensymbol of X, and « the corresponding
ergenvalue of X. Tt is easily shown that if X satisfies a polynomial equa,tion fiX) =0,
the only possible eigenvalues of X are the roots of the equation f(a) = 0. It follows
from (65-53) that the possfble eigenvalues of P are A;, Ay, Ay, A,. Since B} = —1, the
eigenvalues of £, are £ 1. \

A symbol W]:uch has an eigenvalue 0 is singular. For if,in (65-6), X hasa rec1procal R,

we have é — RXp = Rag,

which is impossible if o = 0. It follows that, if « is any eigenvalue of X, X —« is
singular. Applying this to an E-number, if A is an eigenvalue of P, P — A is singular
g0 that det (P —A) = 0; and the possible eigenvalues are the roots of the characteristic
equation. This also follows directly from the fact that P itself satisfies the characteristic
equation.

In elementary theory we separate the magnitude and direction of a vector X, the
magnitude being specified by a linear invariant [ called the length, and the direction by
a normalised or unit vector X /l. It is often useful to make a similar separation in an
extended vector P. We have a choice of two linear invariants of P, namely gs P and
(det P)t, either of which can be regarded as the ‘magnitude’. Correspondingly the
‘divection’ of P is represented by

(@) PlgsP, (b) Pj(det P (65-7)

These are alternative, but not equivalent, definitions of a normalised or unit vector.
Generally the normalisation (b} is preferable because it is invariant for pseudo-rotations
as well as rotations, and it also preserves the correspondence of vectors, vector-
densities and strain vectors. But it is inapplicable if 2 is singular. Some of the most
fundamental vectors in our theory (idempotent vectors) are singular; and for these
we employ normalisation (a).



Chapter VII

WAVE VECTORS
66. Idempotency

A quantity X is idempotent if
X=X, (66-1)

Then all positive integral powers of X are equal to X. Negative powers are non-existent;
for (66-1) shows that the eigenvalues are 1 and 0, s0 that X is singular.

Consider a probability distribution of a variate X over a set of values X,
(r=1,2,3,...). Letf, be the probability of a value X,, the total probability 2f, being 1.
The mean or expectation value of X is X = 2f. X,. In addition we are likely to be con-
cerned with the expectation value of X2, namely X2 = 3f X2 and possibly other
functional means such as X = Zf,etXr.

The means X, X2, X3, ... are independent moments of the probability distribution,

and are not related like the powers X, X2, X3, .. of individual quantities. If X2 = a(X)?,
o is called an averaging factor. If, as is common in rough approximations, we neglect
averaging factors the procedure is equivalent to treating means as though they were
individuals. A less obvious error is to incorporate the averaging factors which correspond
to a commonly occurring standard probability distribution in the empirical constants
of the equations; so that what are really means are treated as pseudo-individuals.

There is immense simplification if X is idempotent, so that X =X*=X%and
¥ = X% — X3. The treatment of means as pseudo-individuals then becomes fully
justified.

It will not be surprising if in our gropings into the structure of things a legend of
individuality bas attached itself to the carrier of anidempotent variate. In statistically
grounded theory it is the closest counterpart of the obsolete classical particle. We now
know that matber cannot be analysed into elements having the individual distinctness
that classical particles were supposed to have; but in the carriers of idempotent
variates we reach elements which, though not less statistical than other carriers, do
not betray their statistical character in the ordinary calculations of dynamics.

The association of pseudo-individuality with idempotency has profound importance
in the logical structure of physical science. We observe only molar phenomena, and
predict only molar phenomena. (It need scarcely be said that the water-drop tracks
in a Wilson chamber are molar phenomena.) Underlying the molar world we are
‘accustomed to picture a microscopic world populated by individuals which yield the
averages concerned in molar phenomena; and it is further supposed that protons and
electrons are such individuals. Even those who more cautiously or more speculatively
—the two terms are often synonymous—regard protons and electrons as not neces-
sarily the ultimate elements of structure, would probably concede that there is some
limit at which statistical analysis can go no further because we are no longer dealing
with means but with individuals. But it now appears that the only kind of individuality
known in physics is the pseudo-individuality conferred by idempotency. There is no

a-2
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objective limit to the fine-grainedness of statistical analysis. We begin with averages
and there is no reason to suppose that our procedure of analysis ever leads to anything
but averages. The accepted stopping-point is decided by the consideration that the
procedure of analysis has achieved its aim when it has removed the indeterminacy of
the relations between linear and non-linear characteristics. The runner stops when the
race is won, not because further motion is impossible; it is for the same reason that
statistical analysis ends in carriers of idempotent vectors or tensors.

When we realise that the partition of characteristics of molar objects among a large
number of carriers is an analysis directed towards a mathematically defined, not an
objectively defined, goal, the calculation of the total number of these carriers by purely
theoretical reagoning will not seem too audacious.

Fundamental importance must accordingly be attached to momentum vectors and
momentum strain vectors which are idempotent; and we shall investigate the con-
ditions of idempotency. Idempotency is invariant for rotations; for if P? = P, and
P’ = qPq, we have P2 = qPqqPq* = qP?q' = qPgq™' = F’,

If P is idempotent, 1 — P is also idempotent. We call 1 —P the image of P.

We first notice certain trivial solutions c_)f P?% = P, namely,

(@) P=0,P=1, _

(b) P = }(1+:E,), and vectors obtained by applying rotations to it.

These are distinguished invariantly by the fact that their quarterspurs are 0, 1, or .
We define a non-trivial idempotent vector to be one whose quarterspur has not these
values. We shall find that the quarterspur is either £ or 2.

67. Standard form of idempotent vectors

It is easily verified that if u, », o, 7, A, p i8 an even permutation of 0, 1, 2, 3, 4, 5,

the vector
’ P= _%E16(Epp+Ew+EAp+E16) (67'1)

is idempotent. We shall prove that every non-trivial idempotent vector can be reduced
to the form (67-1), or s 1mage, by a rolation.

Taking P = XE,p,, multiplying out P?, and equating coefficients of Z, on both
sides of P2 = P, we obtain 15 conditions of the form

20(Po1 P16+ PesPas + PoaPss + PosPsa) = Pos (67-21)
16 '
together with — P = P (67-22)
1

The frame is here taken to be right-handed. Multiplying (67-21) by p,,, we obtainl-

P81 — 2p14) = 20(Pg1 P23 P a5+ Po1P2aPss + Po1P2sPae)- . (67-23)

There are 15 triple products of the form p,, p,.p,,; so that each occurs three times in
the set of 15 equations typified by (67-23). We see from (67-23) that the order of the
suffixes is in each case an even permutation; so that the products always occur with
the same sign. The sum of the 15 products will be denoted by

U= Z_p;w.pa'rpalp' (6724)
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By summing the 15 equations,

15
6iv = (1 —2ipy,) Ellpi = — (1 —2ip1¢) (s +9P15) (67-25)

by (67-22).
A pentadic part of P is a set of five terms whose symbols form a pentad. There are
six pentadic parts of P, denoted by w, (« = 0,1, 2,8,4,5), namely,

woa = anpoc() + Eoclpocl + Ea2?a2+Ea;3Pa3+ Eoc4pa4+ Eocﬁpots' (67'31)

One of the terms is meaningless, and is to be ignored. In X, =, each term of P except
the quarterspur ocours twice; so that

1Y w, = P —ipe (67-32)
The sqiare of @, is algebraic; for example,
— @} = Pi1+ 0%+ Pis+Phat Pis: (67-33)
' 16
Also — 1Y @l = E} 5 — DPe- (67-34)

+

For an idempotent P this reduces by (67-22) to
| 32,08 = phetipue (67-35)
By summing the five equations of the form (67 -23) which correspond to the terms on
the right-hand side of (67-33), we obtain
— @31 — 2ipy) = 2uv, (67-41)

and by symmetry this applies to any of the pentads. Since trivial idempotency is
excluded, the quarterspur ip,q is not equal to 0, 1, or §; so that, by (67-25), v is not zero.
Thus the squares of all the pentads have the same non-zero value

2w

2

Wy = = %(52916 + p7s) (67-42)

by (67-25).
Having established that the pentads are not null vectors, we can choose axes in
five dimensions so that m, reduces to a single component Ey, py;. Then

Poz> Pos> Poas Pos = 0- (67-51)
From the conditions (67-21) we then obtain immediately®

Prgy P1gs D1 P15 = O (67-52)

This reduces @, t0 Bpg Pog + Faa Pas + Fys Pss> 2nd, since w, is not a null vector, it can be
reduced to a single component E,;pyg by rofations B, Eys. These rotations leave py,
unaltered, and do not disturb the results (67-51) and (67-52). We have now '

Pogs Pas = O (67-53)

Since the only surviving pg, is po;, and the only surviving p,, is Py, the only surviving
triple product Is Py PasPes- Lhis occurs in the equations (67-23) for pk;, pis, Pis; and

a For example, py,{1— 2ip1e) = 24 PesPas+PoaPss + PosPaa)> and 1P+ 3.
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these accordingly are the only surviving components besides the quarterspur. Thus
(67-42) becomes

21P01 PasPas

1 .
1-2ip,s (P16 + Pls)- (67-61)

— P = —Pis = —DPis =—
Hence 2ipy, = + (1 —2ep,,), and
(1 —20p,)? = $(ipys+ p)- (67-62)

The roots are ip,g = 1, 2. It is sufficient to consider the root 1, since 2 will then corre-
spond to the image vector. The value ¢p,; = } gives py, = + }¢; and P is reduced to

P = —1i(+ By & By + By + ). (67-7)

In order to satisfy (67-61) the number of negative signs in the bracket must be 0 or 2.
Subject to this rule of sagns the idempotency of (67:7) is eagily verified by direct
multiplication.

The reversal of two signs is provided for in the enunciation of (67-1), since

E#P-EUT HEAp = Eﬂv-l—ETa‘_]_Epl’

and the order of the suffixes is still an even permutation. D. E. Littlewood has pointed
out that when g, v, o, 7, A, p is an odd permutation the square of

%(E‘m) + EG'T + E)tp + Elﬁ)

is — 1. The existence of these anti-tetradic roots shows that it would be erroneous to
jurup to the conclusion that all symbolic square roots of —1 are equivalent. One
would expect the anti-tetradic roots to have an important physical application; but
thus far I have not found any.

68. Spectral sets

A momentum vector P which satisfies the reality condition cannot be strictly idem-
potent; for the reality condition makes the quarterspur (an electrical component)
imaginary, and the idempotent condition makes it real (} or ). We consider instead a
vector with ‘imaginary idempoteney’ which satisfies P? = @P or (—iP)? = —iP.

The conclusion that the strictly idempotent vector must be — ¢, not P, might have
been avoided by adopting the opposite reality convention in § 60; and, in view of the
great importance attached to idempotency, this might seem a strong reason for pre-
ferring the opposite convention. We shall find, however, that the s in P? = ¢P is not the
sign of a badly chosen convention, but a premonition of the transformation from
classical to quantum momentum vectors. Tt will be remembered that the real momenta,
in quantum theory are # times the classical momenta. We have not yet considered how
this result, applying to the momentum 3-vector, is to be generalised; but it already
suggests that the idempotency which bestows pseudo-individuality on gquantum
particles is an idempotency of + ¢ times the classical momentum vector P,

The vector | P = LBy + Epy+ By + Fyg) (68-1)

satisfies the reality conditions and P? = ¢P. The suffixes 1,'2, 3 can, of course, be inter-
changed ceyclically; but otherwise the distribution of the suffixes is unique. Any other
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combination, e.g. }(Ey;+ B4+ By + Hyg) would violate the reality conditions. This
enables us to infer quite definitely the constitution of a particle carrying & momentum
vector which satisfies P2 = ¢P.

In the reduction to the standard form (68-1) the axes have been chosen so that the
particle is at rest; this is shown by the absence of momentum components E,;, K5, Hs;.
There are two mechanical components of P, namely an energy or mass E;;1 and an
angular momentum. ¥,q%. The component %, 4%, which is an invariant having an elec-
trical character, evidently represents a charge. The remaining component Ey, 1 is an
electromagnetic characteristic directed along the a;-axis. A charged particle spinning
inthe B,; plane will have a magnetic moment directed along the xz;-axis; accordingly
Ey } is interpreted as the magnetic moment.

The corresponding strain vector is

8 = — PEyy = — 3i(Byy + Boy + g+ Byg). (68-2)
This is strictly idempotent by (67-7). The components are three-dimensional densities
of mass (—14E,,), charge (— }1Ey;), spin momentum (— }¢Ey;) and magnetic moment
(—228,5). In the strictly idempotent expression we can reverse the signs of any two
components other than F,,; we thus obtain four associated strain vectors S, S, S,, S

given below. We also give the corresponding vectors £, B, P,, P;; the physical meaning
of the association is more easily recognised in these.

— £ Bgy + By + Eyg+ Biy) charge +, spin +,
Sb = — i — Hipg— By + K+ E,5)  charge 4, spin —, g (68-3)
S, = —3i(— B+ By Bg—FE,) charge —, spin +,
Sg = — §e{lps — Eﬂl'}'k — ) charge —, spin -
F, = 1(By + E23+E45 + Bg) charge +, spin +,
P = Y—-E, - — Byt B+ By charge +, spin —, | (65-4)
P =LU—~E,+ B+ Ei— E) charge —, spin +,
Py = 1(By— By + By — By ) charge —, spin — .

The condition that the number of negative signs is 0 or 2 causes automatic reversal of
the magnetic moment if either the spin or the charge is reversed, in agreement with
elementary theory. For all four combinations the mass component of P is 1,
indicating a positive mass ;. Thus the condition that the strain vector is idempotent
distinguishes a direction along the E,;-axis as the positive direction or, as it is usually
called, the future. This is not affected if the frame is left-handed; qs S must still be -+ 2,
and the corresponding term in P = §H,;,is | 1%,;. To put it another way: if we make
it a condition of individuality that the strain vector shall be idempotent, individual
particles will have momentum vectors which all point the same way along the time-axis,
whether their charges are positive or negative.

By direct multiplication we find that the product of any two of the four §’s or of
the four P’s is zero. Thus the strain vectors in (68-3) satisfy

8e=08, 8,8=0 8,+8+85+8;=L {(68-5)
These are the equations which define a spectral set.* They show that the 8’s behave as
selection operators which separate an operand into constituents which are pure, non-

# (1, Temple, Proc. Roy. Soc. A, 338, 479, 1932.
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overlapping and exhaustive. Since S,8, = S, it makes no difference how often the
operation of selection is repeated; this is characteristic of pure selection as contrasted
with selective operations such as ‘fractionation’. Since 8,8, = 0, that which has been
selected by the operation 8, yields nothing to the selection made by §,; that is to say,
the constituents selected by S, and S, are mutually exclugive. The third equation shows
that the separated constituents, when added together, make up the original mixture,
so that nothing has been left out. Spectral analysis of light is an operation of this kind
(with an infinite number of operators), yielding constituents which are pure, mutually
exclusive and together make up the light that is analysed.

When the S-symbols stand alone, the operand on which the spectral selection is
performed is the strain vector 1 or B ,(—1). This consists of one component &, = —4¢
representing energy density or mass density; so that the corresponding matter is
neutral, spinless and at rest, as in the standard uranoid. Spectral analysis exhibits
this as a mixture of four kinds of pure particles in equal proportions, The balanced
combination of the four pure particles will be called a scular particle. In the coordinate
gystem here employed its momentum vector consists of an energy component only,
P45 = 1; butin other coordinate systems it becomes a general 4-vector, p,5, Das, a5 Pas-
Thus the scalar particle is a ¥} or ¥, particle according as the proper mass is treated as
exact or almost exact. !

Idempotent E-numbers with quarterspurs’}, 1, # are said to be of rank 1, 2, 3.2
Distinguishing idempotent strain vectors of ranks 1 and 2 by 8, and §,, we have the
following connection. By adding any two of the §;’s in (68-3) we obtain six §,’s, namely,

- %i(Elﬁ + Ezs)s - '%‘i(Els + EM\)’ - ‘%‘?;(Els + E45)- (68'6)

By multiplying any two of these §,’s (excluding pairs which differ only in sign and give
a product 0) we obtain the original S,’s; e.g.

{— §( B+ Bl { — 3i(Byg + Bys)t = — 3i(Fyg+ Bpy + Eys+ FHyy)- (68-7)

Thus an S, is the sum of two 8,’s, and an 8, is the product of two S,’s. In additive theory
S appears to be the more elementary form; but in multiplicative theory S, is the more
elementary.

The image Sy = 1.5, of an idempotent E-number of rank 1 is idempotent of rank 3.
Assuming additive representation, S, represents either two electrons and a proton or
two protons and an electron. The latter combination occurs naturally as a deuteron.
An electron §; and a deuteron §; = 1— 8, satisfy the conditions for a spectral set

SE=8, 8E=8, 88,=0 &+8 =1 (68-8)

Thus there is a rational foundation for an analysis of matter into deuterons and
electrons. In particular, the deuteron may have the pseudo-individuality conferred
by idempotency. Things do not work out quite like that, because the primary mode of
combination in quantum theory is multiplicative, not additive. But the deuteron (as
the most elementary particle which has zero isotopic spin) is certainly the key-particle
in nuclear theory; and it is interesting to note that the symbolic theory has already
begun to hint at its importance.

* This agrees with the definition of rank in matrix theory.
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For the present we shall be concerned only with idempotency of rank 1; and the
corresponding particles will be called pure particles. The pure particle at rest is defined
" either by 82 = 8 or P? = ¢P. The latter condition is (as already pointed out) invariant
for rotation; but strain vectors are not transformed by rotation in the same way as
vectors, and the condition §2 = & is not invariant. Thus the general definition is

LY

A pure particle is the carrier of a momentum vecior which satisfies P? = P, and
qsP =L (68-9)

The pure particles are the ‘germs’ of protons and electrons. The complete properties
of protons and electrons cannot appear until an environment has been provided in
which these properties can manifest themselves; and at present we are studying them
in a very abstract way in the environment represented by a simple E-frame. But it is
natural to call these embryonic particles by the names that they will earn later, when
properties arising out of multiplicity factors, interchange, etc., are added.

The introduction of idempotgnt vectors is important in restoring the unity of the
E-frame, which seemed a,bc)mz{f) break down through the ineffectiveness of so many of
the relativity rotations, The grandiose scheme of relativistic equivalence with which we
started is whittled down by the need for a neutral, not a monochiral, uranoid. It might
begin to be doubted whether there isany object in stringing together the odd collection
of Vecﬁqrs and invariants listed in (56-7) and usually treated as altogether distinct
vectors. This criticism would, T think, be valid if field quantities alone were concerned.
But the fixed-scale particle theory which we are now developing introduces another
kind of linkage not concerned with rotation—a cross-pinning of antiperpendicular
components. Relativity rotation gives a comparison of space and time measures, and
shows the fundamenta] equivalence which exists between 300,000 km. and 1 sec.; but
it ean do little more. The pure particle is a four-armed comparator determining funda-
mental equivalences between a wider variety of physical characteristics—mass,
angular momentum, charge, magnetic moment.

69. Catalogue of sy:ﬂbolic coefficients

In terms of mathematically real variates p, or @, = —ip,, the electrical part of a
momentum veetor 18

P, = By por+ BozPos+ EosDos + Fop t@os + Eysiwos+ Eig D1 (69-1)

Tn the last section py; has been identified with a magnetic moment. Thus the 3-vector
Pos> Poz Pos 18 the ordinary magnetic moment, and wy, is the time component introduced
when the magnet has a velocity in the reference frame. Since these quantities form part
of & momentum vector, it is more natural in the present context to call the magnetic
moment ‘magnetic momentum’ and the component @y, ‘magnetic energy’. The two
4-vectors in P are then distinguished as the mechanical and magnetic momentum
vectors

P& = E,,9p; + Eoyipy -+ B tps -+ Eye, M = FEyp,+ Bty + Eog o+ Egytpry.  (69-2)

The components @y, Pyq are invariants in space-time. The latter has been identified
with electric charge; so it suggests itself that @; is the magnetic charge or pole-strength.
This is verified because, multiplying a magnetic pole-strength Eosix by a displacement
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B, idx,, we obtain + Ey,{udz,) which has the correct symbolic coefficient for a magnetic
moment y; = pdx,.

We can now find without difficulty the symbolic coefficients of the principal physical
quantities in much the same way as their dimensions or tensor characters are deter-
mined, using the equations which define their interconnections. In the following
table we give the coefficient to be attached to the mathematically real measure. No
attention is paid to sign, since this generally depends on casual conventions.

This table completes our task of anchoring the symbolic frame in molar physics.
It refers wholly to molar {(classical) quantities. We have remarked that quantities in
quantum theory are often analogues, not direct representatives of the correspondingly
named molar quantities. The anchored frame provides a symbolic nomenclature which
will enable us to define precisely the new quantities introduced in extending our
analysis to microscopic physics.

Symbolic coefficients

Electric charge Eig

Magnetic pole-strength st

Energy, mass, time displacement By
Momentum, spatial displacement iy Bayt, Hygt
Angular momentum, angular displacement Hogy Eay, By
Magnetic moment (umj} Bos Bogy Hoge
Magnetic energy ' Hout

Electric moment Bysy By, By
Velocity, mechanical force Bty Bty Hggt
Angular velocity By i, Boyi, gt
Volume, particle density By

Energy density, mass density B

Charge density, electrostatic potential e

Vector potential g, Bpsy Hag
FEilectric force E g Eogy Hgy
Magnetic force Koo, Bayi, Hipt
Momentum density Higty Hogty Hyyt
Angular momentum density By iy Boyi, Eogt
Radius of space curvature yi)

A few special points may be noticed. Inaccordance with the molar outlook, a momen-
tum and its conjugate coordinate are considered to have the same direction; they have
therefore the same symbolic coefficient and are homothetic. The volume (symbol £j;),
used in forming densities is the ‘unordered volume’, which is a vector; the ordered
product of three linear elements has the symbol Ey4i . Eyyi . Byt = — Fy, and is a veotor-
density. The symbolic coefficient of electrostatic potential ¢ is obtained from the
condition that eg is a mechanical energy, or alternatively from the condition that the
operator V2 is real and algebraic. The symbols for velocity can be obtained from the
consideration that velocity (in terms of the velocity of light) is the imaginary angle of
a Lorentz transformation.

The most conspicuous absentee in the foregoing table is pressure. Our symbolic
nomenclature does not yet provide for symmetrical tensors of the second rank; they
require the double frame treated in Chapter vir. Mass density and momentum density
are also components of a second rank tensor in a double frame; but they can be treated
alternatively as components of a strain vector in a simple frame. There is no such
alternative treatment for pressure.
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The symbolic coefficient describes the nature of the quantity, ‘nature’ being defined
by reference to such concepts as relativistic equivalence, chirality, idempotency, all
of which are comprised in the general concept of group structure. We call these structural
concepts, and the corresponding nature of the physical quantity isits structural nature.

In Chapters 1-v physical quantities have been measured in natural units, with one
extraneous standard left disposable. The treatment begun in Chapter vi involves
different units altogether; for the components of P are not of homogeneous dimensions
in any possible reckoning. The only consistent course is to agssign to them zero dimen-
sions, so that they are pure numbers independent of extraneous standards. This is
clinched by the introduction of idempotent vectors, which are necessarily pure
nunbers. We have, in fact, begun to develop the system of description of physical
structure by pure numbers, which logically precedes the introduction of dimensional
quantities, since it is required in the definition of a reproducible standard of length.

For each kind of quantity occurring in the momentum vector there is a ‘fixed-scale
unit’, and the coefficients p, are pure numbers representing ratios to the units. If we
© can recognise observationally a pure particle, we can determine the various fixed-
scale units in ¢.q.s. measure; we know that the mass, angular momentum, charge and
magnetic moment in fixed-scale measure are each 1, so that it is only necessary to
measure the same characteristics observationally in ¢.¢.s. measure. The pure particle,
having the idempotent property which is the statistical substitute for individuality,
is the goal of our analysis; we cannot go beyond it, and we cannot rest satisfied till we
reach it. And, in identifying it observationally, we identify also the fixed-scale units,
or rather quarter-units, which it carries. In identifying the fixed-scale units we have
to remember that certain factors (multiplicity factors, pB-factors) are concealed in the
practical definitions of physical quantities and should be eliminated. In these theore-
tical chapters (vi—vim) the formulae are not as a rule given in a form which immediately
corresponds to the definitions adopted for practical purposes; and. it would therefore
be misleading to express the units which they postulate in practical measure. The
adaptation of the formulae, by insertion of multiplicity and g-factors, is ane of the
principal matters to be dealt with in each kind of practical application that we make.

The mystical conception of dimensions dies hard; and I suppose there will be some
readers who find it hard to swallow a description of a certain angular momentum and
& certain energy as each }. The feeling is that a certain difference of intrinsic nature is
being lost sight of, which ought to have been indicated by different dimensions.? But
it is not true that we describe an angular momentum and energy as each }; we describe
them as }H,;, 1H,;. Equality of measure is clearly distinguished from equality of the
characteristics themselves.

Although the measures in fixed-scale theory are pure numbers, there is still & rudi-
ment of dimensionality in the formulae; because numbers may be real or imaginary—
they may have the dimensions ¢ or 2. By the table of symbolic coefficients the standard
@ (or Byg) by itself corresponds to charge and the standard 42 (or B 44) to density; and
1t will be found that in all cases where the same symbols oceur with or without an

* Philosophy of Physical Science, p. 144,

¥ But dimensions never have been an indication of intrinsic nature. Surely there is no resemblance of
intrinsic nature between a right angle and the population of a city; but they have the same dimensions.

There is no difference of intrinsic nature between energy and mass; but (currently) they have different
dimensions.
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i-factor, the interpretation is in one case electrical and in the other case mechanical.
Thus an equation which had incorrect i-dimensions would equate electrical to
mechanical characteristics.

For a pure particle at rest, the relations P = SEy, 8* = §, give

—8 = Pz (69+3)

We use S to describe mass density and momentum density which are components of
the energy tensor; so that (69-3) satisfies the familiar condition that the energy tensor
has the dimensions of the square of the momentum vector. This may be regarded as an
accidental coincidence, because we are not using the natural units in which the dimen-
sional relation was established, and in defining three-dimensional densities by — PEy,
we paid no attention to dimensions. Whether accidental or not, it has the important
result of easing the transition from natural units to fixed-scale units. The separation
‘of an energy tensor into the product of two momentum vectors is dimension-true in
both parts of the theory.

70. The wave identities

The standard form (67-1) represents an idempotent vector in a specially chosen
frame. We now seck to express the conditions of idempotency covariantly so as to apply
in any frame.

We shall show that for an idempotent E-number P of rank 1,

(@, —ip) P =0 (x=0,1,2,3,4,5), (70-1)

or, in words: P is an eigensymbol of every pentadic part of P, and the corresponding
cigenvalue is the quarterspur.
By straightforward multiplication we obtain

(Wy—ip16) P = By gy + .. + Bog g+ Hozbog + ... + Ey5bys+1ic, (70-2)
where Qg1 = PoaP1e + PoaP1s+ PoaPrat Pos Piss (70-31)
b1s = Y(Po3Pas + PoaPss T PosP3a — P12P16)s (70-32)
iy = Ple+ Th. (70-33)
By (67-21) 20( 015016+ PosPas + PoaPsa+ PosP3a) = Pior
Hence bis = P1a(3—2tp15) = 0,
since the quarterspur is 1. The other b, vanish similarly. Also (67-42) gives
wi = 5(i—9%) = 16 = —Ples
so that ¢, = 0. The result is therefore
(TD-O —_— iplﬁ) P = ZEU;L“UF' (70'4)

Multiplying initially by @, + ipye, the left-hand side vanishes since @§ -+ pfs = 0. Hence

On multiplying out, the two sides are found to have no components in common, so
that both sides must vanish. Hence a,, = 0; and the result (70-1) is established.
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It is useful to notice that the vanishing of the g, gives

PoaP1at PosPi1at PoaPiat PosP1s = 0, {70-5)

and 14 similar.equations, showing that the components form 15 pairs of orthogonal
4-vectors.

The conditions (70-1) are necessary conditions. We shall next show that sufficient
conditions for P? = P are

(#) any three of the equations (70-1),
() qsP =41

By (70-2), the equation (70-1) with « = 0 secures that the b w With neither suffix equal
to 0 vanishes; and the equation with o = 1 secures that the b , with neither suffix equal
to 1 vanishes. There remains only by, which is made to vanish by any one of the four
remaining equations. Thus the condition () is sufficient to give b, = 0. Using ip,; = %,
we immediately derive the original conditions (67-21) for idempotency. Transforming
these into (67-23), and summing in groups of five, we obtain —@2(1 — 2ip,,) = 2w for
all values of «. Thus w?2 is the same for all pentads, and the remaining condition required
for idempoteney (67-22) is then found to be satisfied. o
Tt can be proved similarly that P(w, —ip,;) = 0; and that any three of these equations
together with gs P = } form sufficient conditions. The two sets of equations

(70-6)

(ma_ipls)P = Oa P(wm_ipls) = 0’ (707)

will be called the wave identities. The reason for the name will appear later.

Leaving aside condition (b), the wave identities are satisfied by any multiple of an
idempotent E-number of rank 1; e.g. by the momentum vector P which is — 4 times an
idempotent £-number. They do not apply directly to a strain vector, since that only
satisfies S% = § in a special coordinate system. But, since P = SE, we have

(W, —ip1) Sy = 0, SE:;E.("?E—?:Pm) = (.

Multiplying the first of these equations initially and finally by E,, the wave identities
for a strain vector are

{E45(Wa“'?:2916)} S=0, S{E45(woa“?:2916)} = 0, (70-8)

71. Matrix representation of E-numbers

We can find a set of 16 matrices of 4 rows and columns which satisfy the definition
of the E-symbols, on the understanding that the multiplication in the multiplication
table (53-4) is matrix multiplication and that the unit matrix plays the part of the
algebraicnumber 1. From the nature of the &-symbols the representation is not unique;
for the set of matrices used to represent a frame £, might equally well have been
used to represent an equivalent frame £,. But in any one representation there is a
one-to-one correspondence of F-numbers and matrices; so that every E-number is
represented by a fourfold matrix, and every fourfold matrix represents an F-namber.
The theory of matrix representation of E-numbers is given in Protons and Elecirons,
§83-1-3-6.
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The following is one of the simplest representations of the #,:
Elﬁ E25 ESE E45
¢ 6 4+ O 0O 0 0 —3 ¢ 0 0 0 o 0-1 90
0 0 0 —i 0 0 —i 0 0 i 0 0 0 0 0 -1
¢t 0 0 0O 0—-2z 0 O 0O 0 —-¢ O 1 ¢ O 0
0-i 0 0 —i 0 0 0 0 0 0 —¢ 0 1 0 0
By Egy By, _ Ey,
o =z 0 0 ¢« 0 0 0 O 0 0 = 0O-1 0o o
i 0 0 0 0 -2 0 O O 0 -4 0 1 0 0 O
0 0 0 ¢ 0 0 =z 0 0 —¢ & 0 o 0 0 1
0 0 ¢ 0 ¢ 0 0 -2 4 0O 0o 0O 6 0 -1 0
E23 E31 EIZ E14
¢ o 0 -1 ¢ 0-1 0 ¢ 1 0 0 ¢« 0 0 0
0 0-1 0 0 0o 0 1 -1 0 ¢ 0 0 —1 0 0
0O 1 0 0 1 0 0 0O o 0o o0 1 0 0 -—-% O
1 0 o0 0O 0 -1 0 0 ¢ 0 -1 0 0o 0 o0 ¢
Hyy Ky Eos Ey
0 -2 0-0 0 00— O o 0 0 -1 i 0 0 0
-i 0 0 0 0 0 0 —3 0 0 1 0 0 i 0 0
o 0 0 =z - 0 0 0 -1 0 0 o 0 4 0
o 0 <+ O 00— ¢ 0 1 o0 0 0 6o 0 0 =2

An E-number T = XE, i, is then represented by the matrix

WUy + Ugp + Uy + U1g,
Upy — Upa —Era +lgas
— gy +lg5 + Uy,

— Ug5 +Eag + g5 — Uoss

gy — Uag 512 —Fous
Uyg + Ugs — Ugy — Uy,
— Ugs+1ag —bos — Ugg;

— gyt bz — Uyt iig,

—Uga— by + U5 T s,

—Ugs —ta5 +lo5 —Upss

Uy~ Ugg + Ugp — Uygs

Ugy + Uaa— 12 —Foas

— Ugs—bag — b5 + Ugg,
—Ugg — g5 —Uys—tyg,
Upr + Uy T 15+
Uy — Ugy — Upg + W14,
(71-1)

where u,, = if,. In this representation the E, are four-point matrices, i.e. matrices
with four elements +1 or +¢ and the other elements zero. This does not apply to
representations generally,

The representation has been chosen so that real A-symbols correspond to real
matrices and imaginary symbols to imaginary matrices. Thus the terms monothetic,
homothetic, antithetic apply equally to the symbol F-numbers and their representative
matrices. This will be ocalled a true representation.* There is & general theorem (FProtons
and Electrons, §3-5) that, if complex matrices are excluded, a pentad of fourfold
matrices must contain three imaginary and two real matrices. Thus true representation
is possible only when the characters of the symbols are assigned according to system
(@) in § 60. |

The foregoing set of matrices satisfies the multiplication table, and must always
represent a set of E-symbols, though it may not be the particular set that we have
chosen to designate E,. Thus in a general representation of the £, there will always be
an equivalent frame ), = ¢Z/,9~ to which the representation (71-1) applies.

s Dirac’s matriz system (Quantum Mechanics, 2nd ed. p. 255) is not a ‘true representation’,
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The elements of a matrix 7 are denoted by Top (2,8 =1,2,3, 4) the first suffix giving
the number of the row and the second the number of the column. We use the summation
convention for the row-and-column suffizes of matrices. Unless expressly stated the
summation convention is not used in this book for any other suffixes, except in quoting
well-known formulae from molar relativity theory.

The diagonal sum or spur of a matrix 7' is 7.,,. By (71-1)

spur 7' = T,,, = duyg = dity, — 4qs T, (71-2)
o that the spur is four times the quarterspur—a not undesigned coincidence. This is
proved for the frame ¥, which has the representation (71-1); but both 7, and g8 T
are invariant for rotations, so that applies also in any other frame. To show that the

spur is invariant, we recall that the rule of matrix multiplication is (pg), £ = Payygs

hence y ~ _
Ton = Qap Ly Qya = (97'061 Zap) Tpy = (1), Ty, = 7,y

We have in all representations, .
(Box =0 if p+16, (B, = 4. {71-3)

In the representation (71- 1) the imaginary £ « are symmetrical matrices and the real
E, are antisymmetrical matrices. This continues to hold in all true representations.

If B, is the transpose of £,, 50 that

(Buup = (B, - (71-4)
we have For imaginary matrices E’; =k, (715
For real matrices E; =—F #.} )

By (63-4) the coefficients 8, of a momentum strain vector are all imaginary. It
follows that the real part of Sis a symmetrical matrix and the imaginary part an anti-
symmetrical matrix; in other words,

The momentum strain vector is a hermitic matriz. (71-6)
Denoting the complex conjugate by a dagger,
S =8 (71-7)

The determinant of an F-number defined by (65-1) is the determinant of the repre-
sentative matrix (71-1). The agreement extends to all representations, because the
determinant of a matrix satisfies (65-2) and is accordingly invariant for transformations
g{...)g L

72. Factorisation of E-numbers

A matrix T, , may or may not be an outer product of two four-valued factors 1, Xz-
In any case it can be expressed as the sum of such products (the required number of
products being not more than four). If T = o, Xs> we have for ifs square, formed
according to the rules of matrix maultiplication,

(Tz)aﬂ = Toayj;rﬂ = ‘%;‘Cﬂ&y?{ﬁ - wayWGXﬁ
= T‘nyaﬂ = 4‘?:2516%#
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by (71-2). If T is normalised so that its quarterspur is 1, this becomes 72 = 7. Hence

A factorisable matriz is idempotent when normalised to quarterspur 1. (72-1)
There is also a converse theorem:

If an E-number with quarterspur } is idempotent, the matriz representing it is
factorisable. (72-2)

To prove this, let a matrix 7, satisfying 72 = 7 and spur 7' = 1, be expressed as a
sum of products 2
P T = YoxG+ 9o xs+¥ixs+.... (7231

Let the number of terms on the right be the fewest possible. Then there can be no linear
relation between the ¢’s or between the ¥’s; for if there were a relation

C=o eyt
we should have Top = Yo+ 01X HYLXC+ X%+ ..o,

and the number of terms would be reduced by one. We write 4, for the spur (F*x)yys
so that a product ¥ x5y} x5 reduces to 4,,12x5. The idempotent condition gives

0=T2—T = (A= D VaxF+ (Ao~ D)YExG+ o + Ay W35+ A WO X5+ ...
(72-32)

Setting f = 1,2, 3,4 this gives four lincar relations between the i/’s, Thus (72-31) is
not irreducible unless the coefficients of the y’s vanish in all four equations; that is,

unless (A1) X5+ Ay X+ Aoy ot oo — O, (72-33)

and similar equations. But linear relations between the ¥’s are also excluded; so that
the coefficients on (72-33) must vanish. Thus 4,, = 1, 4,, = 1, ete. Then by (72-31)

spurT = gpur (W%(“)-{-Spur (tﬁbxb)—kspur (Ekcxc)*l"...
= Aaa+Abb+Acc+"‘
=1+14+14...

Since spur 7' = 1, there is only one term on the right; so that 7" is a single product 2ya.
It follows that:

™~ . - -
T'he momentum vectors and momentum strain vectors of pure particles are factorisable.

(72-4)
Conversely,

Any factorisable momentum vector, unless it is spurless, is @ numerical multiple of the
momentum vector of a pure particle. (72-5)

For, by dividing by a numerical factor, the factorisable vector is normalised to have
gquarterspur 4, and (72-1) applies.

Owing to the concealed multiplicity factors, we commonly use momentum vectors
which are numerical multiples of the true vectors; so that the momentum vectors of
pure particles appear in unnormalised form. It is therefore convenient to express the
purity eondition in a form applicable to unnormalised vectors; in particular in a form
which does not make it necessary to investigate whether the quarterspur of the true
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vectoris { or . Effectively, factorisability is the condition for purity. Thisis the condition
that we apply in practice.? _

The factors (if any) of a matrix are unique, except that they can be multiplied by
reciprocal algebraic numbers ¢, ¢~ real or complex.

The four-valued quantities 7, y, which we introduce as factors of the matrices,
representing E-numbers are called wave vectors. When there is danger of confusion,
we shall distinguish the ordinary vectors of physies, including extended vectors, as
space vectors. _

In order to distingnish inner and outer multiplication without recourse to suffixes,
we adopt the following notation: a starred vector ¥* has inner multiplication with a
following matrix or vector, and therefore outer multiplication with a preceding factor;
an unstarred vector ¥ has inner multiplication with a preceding factor and outer
multiplication with a following factor.? Starred and unstarred vectors will be called
watial and final vectors. An important example of this notation is

XY = inner product, ¢ry* = outer product, (72-61)
50 that X" = spur (Yx*) = 498 ('), (72-62)

We note that *E, and £,y are wave vectors (X'E,). = x3(E,}s,), but B, x* and vE,
are wave tensors of the third rank.

A hermetic matrix, if factorisable, is the product of complex conjugate factors v, Pt
Hence, by (71-6), we have for a pure particle,

8 = gyt | (72-71)
{the dagger being counted as a star). Then
P=yx (X = VB (7272)

Thus S and P are fully determined if one factor ¢ is specified.

In the wave identities (70-7), which are the conditions for purity and therefore for
factorisability, we can write P = yry*. Then (@, — ip46) P is the outer product of two
vectors (w, —ip,¢) ¥ and y; and it will not vanish unless one of the two vectors is zero.
Since x + 0, the wave identity becomes (@, —ip,s) ¥ = 0. Treating the second equation
similarly, (70-7) reduces to

(@, —iP1e) ¥ = 0, X'(@,—ipye) = 0. (72-81)
Similarly (70-8) becomes

{Bys(w,—~ipi)}fr = 0, Y Eys(w,— i)} = 0. (72-82)

These equations can be used to determine the factors i, v, ¥ when P is given, or in
certain cases when part of P is given together with the datum that it is factorisable. Tt
is, of course, unnecessary to solve more than one of the four sets of equations, since
¥ and x can he found directly from . We usually employ the set (T~ 1018) W = O.

Thus the equations originally derived as conditions for the existence of factors are
converted into equations for determining the factors. A short direct proof of (72-81),
not depending on the conditions for idempotency, is given in § 89. -

8 It would not exelude particles whose momentum vector is a numerical multiple of that of a pure
particle. But in fixed-scale theory there are usually other conditions which exelude such particles.

b The asterisk is not permanently attached to the vector. The same vector may occur with or without

the asterisk according to the mode of multiplication intended. It is dropped when the multiplication is
indicated by suffixes.

EFT 10
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The equation given by the pentad @, has a special importance, sinece it includes the
components of the momentum 4-vector. We give it in full, setting p,; = m, and
omitting the term Ky py which in practice is taken to be zero because it represents
magnetic charge

(Esipy+ Bogipy+ Bygipy + Byge —im) i = 0, (72-83)
or, in the equivalent strain vector form (72-82),
| (E 10y + By 00y + Byyipy + € +imEys) i = 0. (72-84)
Multiplying (72-83) i;ﬁtia]]y by E5ip, + Byyips -+ Bgyip, + Eyge+ im, we obtain
Pi+pi+pi—et-m? = 0, (72-85)

showing that the proper mass is +m. When p,, p,, p, are replaced by the usunal differ-
ential operators, (72-84) is Dirac’s linear wave equation.»

At this stage of the theory, the linear wave equation (as applied to practical problems
such as the energy levels of hydrogen) is still a long way off. A great deal of inter-
mediate theory is essential before we can deal with it. But a comparison at this stage
helps us to find our bearings. In order to put our equations in a comparable form we
have written m for p,4; but it must be pointed out that the notation is misleadjhg. The
component py is the charge. By the peculiar properties of a pure particle, the proper
mass (as also the resultant spin and magnetic moment) is equal to + p,,; so that for
the most part the misreading of m as mass does no particular harm. But it must not
be supposed that the mass is made negative by reversing the sign of m; it is the charge
that is reversed.

The question sometimes arises: given one pentad of P, say w,, what is the most
general solution of the equation (w,—ip,s) Y = 0 satisfied by a factor ¥ of P? Since
wi = — p¥, the equation is satisfied by v = (@, +ip,4) U, where U is any wave vector
U,; or, introducing suffixes,

Vo= (@o+1P16)er Ur + (T + 1016)as U + (@ + 1P16)a Us + (@o + i016)0a Uy (72°9)

where U,, U,, U, U, are arbitrary constants. If the four elementary solutions were
independent, no restriction at all would be imposed on y,. But w,+1ip,, has eigen-
values 2ip,;, 0, and is therefore singular. Its determinant vanishes, and there is a
linear relation between the four columns of the matrix. Thus one of the four terms in
(72-9) is redundant, and the solution for i, containg only three arbitrary constants.

73. Wave tensors of the second rank
The components of & factorisable E-number P = x* = XE, p, are given by

P, = — X E . (73-1)
This follows from (54:2). For, when suffixes are inserted, (78-1) is -

_lp.u. = %Xa(Ep)aﬁ;&ﬁ = %(Ep)aﬂ (WX*),&& = — '-;T spur (EpP) = —(8 (Epp)‘
By (731) . PulPre = X B0+ XY (73-21)
If a numerical characteristic ¢ and an operator @ are so related that

o = x'ay+x"y, ' (73-22)
¥ Quantum Mechanics, 2nd ed. p. 255, equation (8).
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we call @ the operational form of the characteristic and ¢ its expeciation value (or average
value) in the system which carries ¥, y. In the special case in which ¥ or x* is an
eigensymbol of @, the expectation value agrees with the eigenvalue.
It follows from (73-21) that
P, =—1piE, (73-23)

so that, apart from a normalisation factor —ip,, the symbolic frame is the operational
Sform of the momentum vector. The momentum vector referred to here, and throughout
Chapters vi—vim, will later be distinguished as the ‘particle momentum vector’;
since in Chapter X we shall introduce a *field momentum vector’ which has a different
operational form —i#6/ox,.

When the wave vectors are funetions of position the relation between @ and a is

- defined by
o= f f f Waydas, dosy das, ~ f f s, dany iy, (73-24)

‘the strain vector yryt, which is a three-dimensional density, being used when an
- integration is necessary. In this case we have instead of (73-23),

8§, = —is, B, (73-25}

~ where s, 1s the component of the strain vector.
When a space vector P = ¢ry* is transformed by rotation into P’ = q¥rx*q~t, P'is the
product of two wave vector factors
¥=qp, X" =x"q (73-3)
We regard (73-3) as the transformation law of wave vectors.
~ The rotation g = etF1f — ¢} hag hitherto been disregarded because it makes no
difference to P; but it transforms ¥, ¥ into ayr, a—Ly, where a is algebraic. The factors
of a matrix are unique except for this purely algebraic transformation; thus, by
including #yg rotations, (73-3) covers the transformation of any two factors of P into
any two factors of P’. It is therefore the most general transformation law for 3 and X
consistent with the condition that their product yy* transforms as a space vector,
Wave vectors which, under a rotation ¢, transform like ¥ will be called covariant,
and wave vectors which transform like y will be called coniravariant.
The distinction between covariant and contravariant vectors is independent of the
distinction between initial and final vectors. An alternative form of (73-3) is

Y =9, X =4q (73-4)
where G is the transpose of ¢. For (73-3) gives ¥, = Yup¥p = V595, = (07,

The covariant and contravariant transformations become the same if q=q7%
for (73-4) then gives ™ = yr*g~1, agreeing with the transformation of the contra-
variant vector x* in (73-3). This coalescence occurs if ¢ = et€x and E, is an antisym-
metrical matrix. Then Z, is real, and the rotation is circular. When E, is symmetrical
{imaginary), the transformations are inverse to one another; that is to say, a contra-
variant vector under a rotation ¢ transforms like a covariant vector under the inverse
rotation ¢—1. Thus:

Covariant and contravariant wave vectors behave in the same way in circular rotations,
and oppositely in hyperbolic rotations. (73+5)

EO0-2
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There are four kinds of wave tensor of the second rank. Let ¥, ¢ be covariant wave
vectors and y, w contravariant wave vectors. The possible combinations, and their
transformation laws given by (73-3) and (73-4) are:

(1) Covariant wave tensor Yo' —>q(dNg, )

(2) Mixed wave tensor Ux —>qWx e,

(3) Mixed wave tensor x> Y g, ( (78:6)
(4) Contravariant wave ténsor x> g 3 (vw*)g L.

No. 2 is immediately identified with a space vector by its transformation law
g(...) g 1. A space vector is a mizwed wove tensor of the second rank. This is the primary
link between wave tensor calculus and ordinary tensor calculus.

Setting 7! = ¢’, the transformation law of no. 3 is ¢’(...)¢"*; so that it also is a
space vector. The space vectors (2) and (3) rotate differently under the same frame
transformation—a behaviour provided for in ordinary tensor calculus by recognising
two classes of space vectors, covariant and contravariant. We have ¢ = ¢ for the
circular rotations (real antisymmetrical £,) and ¢° = ¢ for the hyperbolic rotations;
thus (2) and (3) behave in the same way under spatial rotations and oppositely under
Lorentz transformations—agreeing with the distinction between covariant and
contravariant vectors in elementary vector theory. We accordingly identify the wave
tensors (2) with covariant space vectors, and (3) with contravariant space vectors.?

To interpret the transformation of (1), we first apply it to E,;. The transformation
AELE, A E40 leaves By, unchanged if

(@} E,is symmetric and anticommutes with Hy;, or

(b) E,is antisymmetric and commutes with Z;.

We find that the only rotations which change E,, are the six electrical rotations
B, = By, Ey, By, By, Byss Big. Restricting ¢ to mechanical rotations we next apply
the transformation g(...) g to a strain vector § = — P ;; it gives

8" = q8q = —qPqqE,q = —~P'E.

Thus if the transformation ¢(...)¢g~! is applied to P, and the transformation ¢(...)7
is applied to S, they still preserve the correspondence S = — P'E,; which expresses
that 8’ is the three-dimensional density of P’. Thus (1) is identified with a strain vector.
More precisely it is a covariant strain vector, i.e. the three-dimensional density of a
covariant space vector.

Since the transformations (3) and (4) can be written as ¢’(...)¢'1, ¢'(...)¢’, no. (4)
is the three-dimensional density of a contravariant space vector and is identified as
a contravariant strain vector. _

In arriving at this identification we bave excluded clectrical rotations; but we shall
now accept the transformation law ¢(...)7 as the fundamental definition of a strain

a The opposite identification might seem more natural, since (2) rotates in the same way as the co-
ordinate axes which are generally depicted as contravariant vectors, But the essential criterion is that
the momentum vector is of type (2). In molar theory this is a contravariant vector, but in microscopic
theory it is & covariant vector. Since our main applications are in microscopic theory, we have adopted
the nomenclature best suited to it.
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vector—treating the original definition (as a three-dimensional density) as a special
interpretation, which is legitimate so long as electrical rotations are not contemplated.
The special interpretation implies that we are able o define a real three-dimensional
volume by position vectors in space-time. Since electrical rotations mix the two anti-
thetic parts of the extended space vector, they upset the reality conditions, and their
exclusion is understandable.®

We have considered factorisable wave tensors. By expressing a non-factorisable
wave tensor as the sum of factorisable wave tensors, the transformation formulae
(78:6) and consequent identifications with space vectors or sfrain vectors are im-
mediately extended to all wave tensors. Our general result is:

Covariant and contravariant space vectors are mized wave tensors of the second rank.

Covariant and contravariant sirain vectors are covariant and contravariant tensors of
the second rank.

74. Wave tensors of the fourth rank

The most fundamental tensors in physics, such as g wand T, are symmetrical tensors
of the second rank. To form these we require outer products of two space vectors vrx*
and ¢, or sums of such products; so that they are wave tensors of the fourth rank.
Since the asterisk notation becomes unmanageable, we use suffixes. Contravariant
character will be indicated either by upper position of the suffixes or by underlining it;
and the four vectors are denoted by i, Par X%, W% O by ¥, by Xy @, Thus P, g =, xF
Is a covariant space vector; P,s = x*f; is a contravariant space vector. The space
tensors require two covariant and two contravariant wave vectors; and with these we
can also form mixed strain tensors of the second rank. Tt is customary to use the nota-
tion 7, which strictly refers to one component, for the tensor as a whole; but this is
confusing in equations between wave tensors and space tensors which apply only to
the tensor as a whole. We therefore use the notation T, Ty, T for the covariant, mixed
and contravariant space tensors.

We obtain the following associated group of tensors:

T =Ty = ¥ux°p,0* = =Ty covariant space tensor,

Ty =Tps =, xPo¢y = T mixed space tensor,

Ty =Toppe = XUpdp 0’ = T mixed space tensor,

Ty =T pys = XYpw’dy = — T  contravariant space tensor, (141)
T5 = Topys = YaPp?0® = —Z,® mixed strain tensor,
Is=1, ﬂ;&‘ = X0’ ds = — 2% mixed strain tensor,

T, = o:ﬂzé‘_ =¥, Pp0?x’ = Z" mixed strain tensor,

Ty = Tapys = 0"x%P, 9y = Z'°, mixed strain tensor, )

In all there are 24 permutations giving 24 associated tensors; but the foregoing 8
exhibit the various kinds of relation which can ocenr., Covariant and contravariant

* We may regard neutral space as a superposition of wo opposite chiral spaces and correspondingly
divide the volume ¥ into two chiral volumes V.+V_. A mechanical rotation has no chiral bias, and
V., V_rotate together. An slectrical rotation rotates ¥ + and V_ oppositely, so that it disrupts the neutral
volume; and three-dimensional density is no longer definable.
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strain tensors do not appear, because these require four wave vectors of the same kind
which cannot be formed into space tensors.

Tn Galilean coordinates, raising or lowering a suffix reverses the sign of the space
components which are represented by symmetrical matrices. Permuting the suffixes
of the two wave vector factors transposes the matrix and reverses the signs of the anti-
symmetrical matrices. Thus the transformation —r,x%¢,0° >, ¥#¢;07 raises the
second suffix, and changes Tp, to 7',%, in agreement with (74-1). Thus the association of
the first four tensors in (74-1) agrees with the usual association of Ty, 77,0, T and 770
in ordinary tensor calculus.® The permutation transformation can be expressed in the

1
o (= Toodagys = (Te)apsr (74-2)
We have introduced two different strain tensors Z, Z’ given by the permutations
(Zﬂo)myﬂﬁ = ("" TO{})aﬁ-yé‘: (ZBO) = ("" %O)ad‘ﬁy! (743)
or (Zo")uspy = (Tﬂo)aﬁyB! (Zg%) = (ﬂ)o)aayﬁ- (74-4)

We shall call Z,° the eross dual and Zg° the straight dual of T,°. The study of this associ-
ated group of space tensors and strain tensors forms a very fundamental part of our
theory, and will be taken up after double frames have been introduced.

The outer product S; x S, of the strain vectors Sy, S,, which correspond (by the
formula 8 = — PE,;) to the space vectors P, F,, is a strain tensor which corresponds
to the space tensor P, x P;. This ‘correspondence’ must be distinguished from the
‘association’ of strain tensors and space tensors defined by (74'3) or (74-4).

In double-suffix notation 7, becomes 7, .5 so that 7' includes, in addition to the
ordinary space tensor of the second rank, third and fourth rank tensors restricted by
conditions of antisymmetry. In particular the Riemann-Christoffel tensor has the
requisite antisymmetry, and can be included in the form 7, ,,. Thus fourth rank wave
tensors are sufficient to cover all the tensors ordinarily used in molar physics; and we
shall not need to consider combinations of more than four wave vectors. The ordinary
definition of ‘rank’ is evidently unsuitable when we consider extended space vectors
and tensors. We shall therefore re-define it by counting two antisymmetrical suffixes
as one unit. Then space tensors of the first rank (space vectors) are wave tensors of the

second rank; and space tensors of the second rank are wave tensors of the fourth rank.

75. Phase space

In a neutral environment electrical components are dormant, and instead of the
extended momentum vector we consider the complete momentum vector consisting of
mechanical components only and carried by a ¥, particle. Correspondingly we have
to consider a complete strain vector. By (59-3) the purely mechanical part of a strain

vector is . _
8, =283, (p=1,2,..,10), (75-1)

the accent indicating that the summation is over the imaginary (symmetrical) #,. The
s, are interpreted as strains in a physical system containing the V¥, particle; and each
value of S, represents a different state of strain of the system. As we have to consider

% Association by raising or lowering suffizxes is usually regarded as identity—they are covariant, mixed

and contravariant forms of the same tensor T'. Thus the space tensors in (74-1) are forms of the same
tensor, The group of 24 permutations includes other space tensors which are forms of related tensors,
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probability distributions over the possible states, it is convenient to represent the
states by pointsin a phase space. By the reality condition (63:4), the s ,are all imaginary;
we therefore set §,, = 1 X, where

X=2Ex (75-2)

wp

and represent the real coefficients x, as coordinates of a point in phase space.

Setting aside the proposed physical application, we shall first investigate the pure
geometry of the space (75-2). It is transformed into itself by geometrical rotations in
any of its 45 coordinate planes; these are true rotations ¢X¢— if the axesin the plane
are perpendicular, and pseudo-rotations ¢X¢ if the axes are antiperpendicular (§ 56).

Consider first two perpendicular terms £, %,,, ,,%,,; then the geometrical rotation
between them is a true rotation ¢X¢~', and the matrix in ¢ is the product &, B,, = E,,.
Since #,,, E,, are imaginary, I, is real and antisymmetrical; so that § = ¢~%. Con-
smlermg next two antlperpendmular terms &, £, the geometrical rotation is a pseudo-
rotation ¢Xq, and the matrix in ¢ is B, = ¢E,, E,,. Since E,,, E,, are imaginary,
FE,,isimaginary and symmetrical; so that § = g. Ineither cage the geometrical rotation
is ¢X¢, which is the transformation of a strain vector. Thus, when the position vector
in phase space represents a strain vector, the tensor transformations of the strain
vector are the internal rotations of phase space.

To understand the significance of thig result, it must first be realised that, when we
use the complete momentum vector instead of the extended vector, it is not assumed
that the electrical components vanish. For example, an electron is a ¥}, particle, not-
withstanding its electrical characteristics. We must be allowed to investigate the
probability distribution of a set of mechanical variates without necessarily assuming
that no other variates exist. But in relativity theory one of our chief instruments of
investigationis rotation and the tensor transformations connected with it; and rotation
of the most general kind is liable o mix electrical and mechanical components. If we
separate P, from F,, the two parts do not transform independently under electrical
rotations. The foregoing result shows that, if we separate S, from §,, S,, transforms
- independently under all rofations. The change of 8 due to the rotation is, so far as the
mechanical components are concerned, a purely internal transformation of phase
space which transforms mechanical components into mechanical components.

The 15 ordinary rotations ¢ each give geometrical rotation in three coordinate
planes of phase space; the six real B, give circular rotation and the nine imaginary E,
give hyperbolic rotation. By (65 43) thege are all wnitary transformations, Whether
they are true rotations or pseudo-rotations; that is to say they do not alter det §,,. Tn
addition there is an F,; pseudo-rotation which is not unitary; it multiplies S, by a real
algebraic factor, and may be regarded as a scale transformation. We can eliminate the
scale and the K, transformation by considering the normalised strain vector

T = Sf(det 8,08,

agin (65-7). This defines a curved 9-dimensional locus, which may be called ‘ orientation
phase space’. It exhibits all the 45 geometrical rotations. It is not a closed space.?
For example, the strain vector S, = — }i(#,,+ #,;) satisfies the reality conditions, and
is idempotent and therefore singular. For a singular S, 2, is infinite.

* In Protons and Hlectrons, § 74, phase space was wrongly stated to be closed.
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A volume element of orientation phage space is a solid angle dw of directions of the
position vector of phase space. We regard solid angles which are transformed into one
another by geometrical rotation (i.e. by strain vector transformation) as equal. The
volume element of phase space is then r*dwdr, where r is proportional to (det S, ).
In this way a systematic measure of volume is defined in phase space, as was stated
in§ 15. This metric, however, does not seem to be required in any practical development.
Owing to the non-closure of orientation phase space, we cannot contemplate a uniform
probability distribution of orientation either as a naturally occurring distribution or
for comparison purposes. Thus far our use of phase space has been limited to cases in
which the probability is concentrated in a small region (almost exact states).

76. Relative space
The two-particle transformation (§ 26),

ma, +m'x,

mtm gazx:c—xa (05=1,2,3,4,0),

x . (76:1)

is extended to five dimensions by including phase coordinates x,, z;, whose conjugate
momenta p,, Py are the scale momenta (§ 24). The transformation replaces the particles
m, m’ by an extracule and intracule, and their separate scales by a combined scale and
an interchange momentum (§25). Since interchange affects only the relative co-
ordinates £, the interchange momentum must be identified with the momentum w,
conjugate to £y; this leaves F, to be identified with the combined scale—as we should
naturally expect. In short, the interchange variates are the scale and phase of the
relative space.

The separation of intracules and extracules is a point of bifurcation of theory.
Extracules are normally dealt with by molar theory, or by simple extensions of it to
provide for the analysis of the energy tensor into scale-free particles. Intracules are
dealt with more intensively by quantal theory. To begin with the extracules and
intracules have five coordinates x,, £, locating them respectively in an z-space and a
£-space of five dimensions, the £-space being a relative space. After the separation the
two spaces are each reduced, but in different ways, to four dimensions. The z-space is
reduced by stabilising the scale, so that the coordinate x, drops out; it then becomes
ordinary molar space-time. In £-space the spatial coordinates &, &, £; and the
interchange coordinate £, are clearly indispensable; but there is no obvious use for a
differential time coordinate £,. We therefore reduce the £-space to four dimensions
by stabilising w,, so that the relative-time dimension £, drops out.

We have therefore four-dimensional z- and £-spaces which have three dimensions in
common, in the sense that the directions of the axes &,, £,, £; are geometrically con-
gruent with the direetions of %, 2,, 25, Instead of being extended to five dimensions,
the two-particle transformation is effectively reduced to three. For z, and §, no longer
exist as coordinates; at the most they are formal variates invented to satisfy the
transformation.

The four-dimensional £-space and z-space are structurally similar; and there ig
analogy between the properties of intracules referred to §-space and of extracules
referred to z-space. We shall show presently how to put the vectors in the two spaces
into correspondence so as to exhibit the analogy. It is natural to make this corre-
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spondence the basis of nomenclature in fixed-gcale quantum theory. For example, the
non-spatial component of the momentum 4-vector in x-space is called energy, and by
analogy the non-spatial component of the momentum 4-vector in £-space is called
energy. But it is important to realise that this ‘designation by analogy’ is not an
identification. :
- Thus in the very extensive specialised developments of quantal theory the nomen-
clature follows a quantum-classical analogy. This is very useful for assisting progress.
But it ereates confusion when the actual quantities and their quantum analegues oecar
together in the borderline investigations which unify physical theory. We must dis-
tinguish carefully between designation by analogy and designation by identity.

The absence of a time dimension in £-space needs closer investigation. Our first
impression is that the omission means that we consider only steady states. But ‘steady’
means independent of x,, which in any case is not a coordinate of the intracule. A
variation with the differential time £, would not make the system unsteady. The real
meaning of the omission of £, is that the particles m, m' are being contemplated together
ag one system; for it is implicit in the conception of a system that its parts are simul-
taneous. A proton to-day and an electron yesterday do not constitute the system which
we call & hydrogen atom; the earth now and the moon 0501 ago do not form the earth-
moon system whose orbit is studied in celestial mechanics. Analysis of a system means
resolving it into a set of simultaneous constituents which are together equivalent to
the system at the same instant. This principle has been applied in introducing strain
vectors (§59), when it was pointed out that the difference between a particle con-
templated in isolation and the same particle contemplated as part of a system is that
in the latter case it is associated with planes of simultaneity furnished by the system
as a whole. When a set of particles is regarded as a system, the characteristics of the
system at any instant are (by definition) a synthesis of the characteristics of the
particles at that instant.

Atfirst sight the condition £, = 0, resulting from the definition of a system, is 2 mental
constraint. It does not restrict the freedom of the particles in the way that a condition
such as £, = 0 would do. But we have seen in § 35 that ‘time’, when it forms a dimension
of a domain of probability distribution, is a coefficient of under-observation, and means
the time elapsed {rom the cessation of full observation. Thus the condition z, = x}
means that the two particles, if not fully observed, are under-observed to the same
extent; in other words, £, = 0 is the condition for uniform observation. Uniform
observation, like uniform environment, is naturally accepted as part of the standard
conditions in which an object-system is supposed to be studied.a

Elementary relativity theory has made familiar—much too familiar—the fact that
the term ‘simultaneity’ was used in classical Newtonian theory in circumstances in
which no observational definition could be supplied. But there was no ambiguity in
the definition of simultaneity in a two-particle system, e.g. a double star; nor is there
any ambiguity in a hydrogen atom. The planes of simultaneity of a system are those
of a Lorentz frame in which the system as a whole is at rest, so that the momenta
Py, Py, Py of the extracule are 0. It is to this frame that the condition £, = 0 refers.

& The study of non-uniform observation ig scarcely likely to be practically important; but, just ag in
treating non-yniform environment, the procedure would be to treat the non-uniformity as a disturbance
superposed on the standard conditions of uniform observation, and incorporate it in the object-system as
an extraneous object-field of & kind hitherto uninvestigated.
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Thus, when the general mathematical transformation (76-1) is applied to a physical
system, it is subjeet to the restriction

Pl’ P2, P3 = 0. (76'2)

The incorporation of (76-2) makes the transformation no longer Lorentz-invariant. The
terms referring to the extracule in (26-21), (26-41), ete., are thereby very much simplified.
The purpose of the special choice of axes is, however, not to simplify the extracule, but
to obtain a straightforward description of the relative 4-space by four independent
coordinates. If the frame is not chosen in accordance with (76-2), there are five
coordinates £, connected by a linear relation expressing the condition of uniform
observation.

The quantum-classical analogy begins as an analogy of relative £-space and ordinary
&-space; but it delivers a relation between two 4-spaces which has a much wider applica-
tion. The simple relative space described by £-coordinates occurs only in the two-
particle problem; but the substitution of phase for time as the fourth coordinate is a
general feature of quantal theory. A more general nomeneclature is therefore needed.
We distinguish molar space and micro space. Micro space is derived from molar space
(i.e. ordinary space-time) by taking as the fourth coordinate the phase instead of the
time; or (in terms of momentum) by de-stabilising the scale and stabilising the energy.

71. Vectors in micro space

We shall now investigate in detail the conversion of molar space into micro space by
de-stabilising the scale and stabilising the energy. By (57-5) the terms?

P = (Ey5p15) + BysDas+ By Pos + BreP1a (77-11)

of a momentum vector in molar space correspond to a vector density 5, where

?:SB = (Ealpls) + E04_'p45 - E05 iplﬁ —_— E].G £p05" ' (77_ 1 2)

Fromits very nature the scale cannot be zero; so that, whether unstabilised or stabilised
it must be included among the components of the momentum vector. The stabilised
scale of molar physics is a real algebraic constant unassociated with direction, and is
accordingly identified with the component p,5 of 2. When it is de-stabilised, we
introduce a fifth dimension z, in which to represent its probability distribution and that
of its conjugate phase. Thus in de-stabilisation the scale is turned into & new direction
in which it has a symbolic coefficient B, instead of #,,.* A change of scale, numerieal
or symbolic, reflects a change of the extraneous standard used as unit for the measure-
ment of all components of P. Thus the factor —iEy;, which converts the scale B p;,
into Hy;pye, must be applied to all the components; and P is converted into —iPE,,,
which is equal to —® by (57-5). The sign is a matter of convention, and can be made
~ positive by measuring the de-stabilised scale in the negative direction of E,;. We have

& A bracket is used to denote the sum of three similar spatial terms.

b Tt is unimportant whether the coefficient is Hy; or E,s¢, because the factor 4 would be eliminated in
the final result (77-3); but Hy; can be shown to be correct. From the expression (68-4) for a pure particle,
it appears that, corresponding to a real p,,, the energy p,; is real. Thus p,, is a time-like unit——a unit of
energy rather than of linear momentum; and when represented in a direction normal to space-time, it

must have the coefficient E,; characteristic of a time-like radius of curvature., The space-like radius of
ourvature of actual space-time has the symbol F 2 (§ 63).
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accordingly the result that, as a preliminary to the de-stabilisation of scale, P is changed
to . :

In 9B the five axes are associated with the symbols By, . By, By, Eys, and we
therefore designate them @, @,, @3, #,, ;. This involves a change of the designation of
the phase eoordinate from z, to 2. The stabilisation of the #, momentum (scale) changes

B to P, where P = PiE,, (77-21)
Similarly the stabilisation of the z, momentum (energy) changes § to P, where
P = Fily,. (77-22}

A simple explanation of (77:21), (77-22) is that in order to eliminate a dimension of a
domain of probability distribution we must integrate over the coordinate that is to be
dropped. In an w; integration the symbolic coefficient B, of the differential dxg is
incorporated in the integrated vector.

From (77-21) and (77-22) P,= PE = -8 (77-3)

by (69-1). Since the transformation from P to Ly, via, 9B, consists in de-stabilising the
scale and then stabilising the energy, P, is the representation in micro space of the
vector P in molar space.

T'he vectors of micro space are the strain vectors of molar space. (77-4)

This is the basal quantum-classical analogy. Micro space is used in quantum theory;
and the vectors of quantal theory are the vectors F, of micro space. These are analogues
of the classical vectors P, but are actually the classical strain veciors . We express this by
saying that £, is a vector in analogous designation and a strain vector in identical
designation.

In particular, the quantum momentum vector of an intracule is classically a strain
vector. This is easily understood if we remember that the atom to which the intracule
belongs has an extended probability distribution in z-space; consequently the momen-
tum vector F, of the intracule is spread out as a density in molar space. The strain
vector § representing this density is, as it stands, a vector P, in micro space, and so
becomes the momentum vector in fixed-scale theory.

An extended probability distribution is often described as a wave. Considering the
wave in z-space, the molar point of view is that the wave itself is the intracule, which is
accordingly described by a strain vector. The micro point of view is that the intracule
is a compact particle at some unknown point in the wave, and it is accordingly described
by a momentum vector. Equation (77-3) reconciles the wave and particle aspects,
the same expression being a strain vector in molar space describing a wave and a
momentum vector in micro space describing a compact particle.

78. The quantum-classical analogy

In order to display the quantum-classical analogy we introduce in micro space a
frame B, formed from E, by the transposition of suffixes

4,5 05,0, 4, (78-1)



156 Fundamental Theory

The real or imaginary character of the symbols is not changed, the three suffixes
being equivalent in this respect; also, since (78-1) is an even permutation, E,, is
unchanged. The vector F) = PE,; = XE E,;p,, referred to the E’-frame, is found to
consist of

(Eis015) + EisPos (momentum 4-vector),

(E331001) — (B4 P33) (spin 6-vector), (78-2)
(Eo1P10) + BoaPos — Bosipre+ Eigipys  (dormant components).

This gives the ‘dictionary’
(P1s); Pas = (P15)> Poss

(P33)s (P1a) = (1), (—0s3)5 (78-3)
(Po1)s Poss Pos> P1s = (P14)s Poss —P1g> ¥Pyss

by which we translate quantum designation p, into classical designation p e

The governing consideration is that micro space agrees with molar space as regards
thespatial dimensions but the phase coordinate (which for an intracule is the interchange
coordinate) takes the place of the time. Representing the phase coordinate as a molar
fifth dimension z;, the momentum 4-vector p15, Pss, Pis, Pas OFf Micro space must consist
of the components 5, P45, Pas, Pos i molar space. This identification is shown in (78-3);
and it is sufficient to fix the permutation (78-1).

It will be seen that only four components 5, a5, Va5, Pos have the same designation
by analogy and by identity. All other components are more or less disguised by the
analogy.

The analogy will not be complete unless it extends to reality conditions. Reality
conditions are boundary conditions furnished by the postulated environment; so that
a general treatment would resolve itself into the formal problem of determining a
micro environment which is the analogue of the neutral uranoid in molar space. It is
more useful to treat the special problem of finding the reality conditions for an intracule
in its normal environment, namely in a hydrogen atom in a neutral uranoid. We shall
show that the relative reality conditions—those which decide whether a term &/ p/, is
homothetic with or antithetic to a term Z,p,—are formally the same as the molar
reality conditions. The absolute reality condition is opposite, e.g. i, p! for an intracule
is antithetic to K 4p, for a molar particle or an extracule.

The proof consists mainly in recapitulating the derivation of the molar reality con-
ditions, showing that the analogy holds at each stage. The only step presenting any
difficulty occurs at the outset. To prove that the 4-vector (E{;p1;) + Eis 055 18 mono-
thetic, we have to show that there is a mathematically real rotation between pj; and
a spatial component; or in classical designation between p,, and a spatial momentum.
The ordinary relativity rotations of the £-frame which affect p,, are inhibited by the
postulated neutrality of the environment; but for an intracule there exists an additional
interchange rotation, which is relativistic (§ 25). This is in a plane through the radius
vector &, &,, &, and the extra-spatial axis x;; and it rotates p,, with the component of
(P15, P2s» Pas) in the radial direction. The proof therefore turns on whether interchange
is a mathematically real rotation. By means of a double frame we shall find in § 81 a
symbolic expression for the interchange rotation which shows that it is mathematically
real. Accordingly the momentum 4-vector of the intracule is monothetic.
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- If a particle at a real point of space has a physically real linear momentum itg
angular momentum about the origin is physically real, The angular momentum is the
vector product of the position vector and the linear momentum. The congruence of the
three-dimensional z- and £-spaces is a congruence of real points so that the position
vectors (H,;2,) and (B, £,) for real points in the two spaces are homothetic. Tt does not
follow that the momentum 3-vectors are homothetie; but it does follow that the angular
momentum vectors are homothetic or antithetic according as the linear momentum
vectors are homothetic or antithetic. Since the whole mechanical (4 6)-vector in
molar space is monothetic, it follows that the mechanical (4 + 6)-vector® of the Intracule
is monothetie.

It remains to consider the dormant terms. For £-space the postulated uniformity of
observation is the analogue of the postulated neutrality of the uranoid in x-space; the
one postulate makes the standard conditions such as to afford no criterion for dis-
tinguishing past and future directions of relative time, and the other makes them such
a8 to afford no eriterion for distinguishing positive and negative sign of charge. The
argument of §§ 63, 64 applies mutatis mutandis to E-space; and we conclude that the
dormant terms are antithetic to the active terms. Thus:

The relative reality conditions Jor an intracule correspond by analogy (but not by tdentity)
to the molar reality conditions. (78-4)

The momentum 3-vector is the same in both designations; but we have found
(8§ 18, 21) that the momentum 3-vector of an intracule is an imaginary classical momen-
tum. Thus p,; (or p};) for an intracule ig antithetic to P45 Tor a classical particle. By
- (78:4) the antithesis must be extended to all pairs of corresponding components; that
is to say, p,, for an intracule is antithetic to p, for a classical particle.

In quantum designation, the active part of the momentum vector of an intracule is
imaginary, and the dormant partas real. In the strain vector (S = — F, By) the coefficients
8, are all real. (78-5)

The same result is obtained more fundamentally from the consideration that the
standard in molar physics is a quantum-gpecified standard; so that the scale which

oceurs as a component of the momentum vector of the intracule also serves as the
~ molar scale. It must therefore satisfy the molar reality conditions as well as those of
an intracule. In quantum designation the scale momentum Pys has become the energy
P15- The molar reality condition is that Pos 18 imaginary; hence P15 for an intracule is
imaginary. This is antithetic to the condition for the classical energy p,. of a classical
particle,

As would be expected, it is the fixity and discreteness of the quantum energy p;, of
the states of an intracule that makes it serviceable as a standard for molar physics.
The so-called eigen-energies of the states are actually (i.e. classically) eigen-scales.
The quantum-classical analogy changes our point of view, so that pj; is regarded as a
self characteristic of the intracule. But classically the scale p,, is the representative of
the extraneous standard, added to the object-system in perfecting it, and its changes
reflect changes of the extraneous standard. Thus when we use a quantum-specified
standard in molar physics, we literally incorporate the Pos of a certain state of the

% Le. the vector designated mechanical by analogy,
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intracule? as the scale momentum of every molar object. Compared with this p;,
molar energies and momenta are enormous; so that in the ordinary approximation
Pos is put equal to 0. This is the scale-free approximation. We then use a standard which
has a large but unspecified ratio to the microscopic standard. This cannot be represented

by po; which is zero; but it is introduced as a stabilised scale, represented by p,¢ in
accordance with § 77,

In the scale-free approximation py; = 0 for all molar systems. (78-6)

It is useful to give explicitly the reality conditions for the various components of a
momentum vector for both designations and for both kinds of particle.

Classical designation: )

Al. Molar particle: real (?23% (Po1)s Pass Pre; IMAGINATY (P15), (P14)s Poss Poss
A2. Intracule:  real (pis), (Por)s Dus> Poss IMAZINATY (Py3), (P14)s P1es Pos- , 787)
Quantum designation:

B1. Molar particle: all imaginary;

B2. Intracule: real (pis), (P1e)s Pos Pos> iMaginary (Pas), (261)> Piss Pie-.

The conditions for a molar particle apply also to an extracule.
Components which satisfy the same reality condition in an intracule and in a molar
particle will be called persistent. The persistent components are

(Por)s (P1a)s Pas> Pos  OF  (P23) (Po1)> Pres Das- (78-8)

The importance of the persistence of p,; has already been noticed. It is also important

that the magnetic moment (pg,) is persistent; this means that the intracule has a real

classical magnetic moment, which will give it a real energy in a molar magnetic field.
In quantum designation, the idempotent vector

— $i( By + Bys+ By + By) ' (78:9)
is persistent, and satisfies the reality conditions both for an infracule and an extracule.

% Primitively pgs would be the pis of the intracule in a state in which it has an idempotent momentum
vector. But multiplicity factors are incorporated in the aceepted procedure of transferring the scale to
molar physics. It should be remembered that quantum energies are not definable by molar control;
and the procedure of conmecting x with a molarly controlled mass » (§§ 29, 30) is very roundabout.
This agrees with the fact that pis and p,, are antithetic, so that there is no direct experimental com-
parison.



Chapter VIII

DOUBLE FRAMES
79. The EF-frame

For the treatment of space tensors of the second rank, such as the energy tensor, we
employ an EF-algebra which is the direct square of the KH-algebra, and therefore the
direct fourth power of the - or quaternion algebra.

A double frame consists of 256 symbols E.F (n,v=1,2,..,16). The E, and F,
form two equivalent simple frames, and separately obey the multiplication table
(63-4) together with B, = +4, Fi, = +¢. In contrast to the equivalent frames K,
- ¥, previously treated, the F, are not E-numbers. They are new symbols altogether,
and every F, commutes with every E,. The multiplication table therefore includes the

additional rule :
EF, = F,,E#. (79°1)

A linear function of the &, F, with algebraic coefficients is called an EF-number. The
product of two EF-symbols reduces to an EF-symbol multiplied by +1or 44, Thus
sums and produets of ZF-numbers are FF-numbers, and the algebra is closed.

Alternatively we use a single-suffix notation EE, (1 =1,2,...,256) for the EF-
gymbols. Thus an EF-number 7 is written in the alternative forms

16 16 256
T'=XXEFEt, =3 EFL,. # (79-2)
11 1 \,

An equivalent double frame is obtained by the transformation
EF, = qEF ¢, . (79-3)

where ¢ is any non-singular FF -number. The theory of relativistic equivalence applies
to double frames in the same way as to simple frames (§55). If

T = SEFt,, 1T =ZEF,,

so that 7" is constructed in the accented frame in the same way that 7 is constructed
in the unaccented frame, 7" and 7' have the same equivalence as the frames; and the
change T'— 7" is described as a rotation, i.e. an alteration without strain, of the
physical system represented by 7. The rotations of a physical system are accordingly
given by 7" = qT¢~*; and by re-resolving 7" in the unaccented frame, so that it is
expressed as 7' = 2EF,¢t,, we obtain the transformations t,—t, which represent
rotations of a physical system in a fixed frame.

When a standard environment is postulated and account is taken of the boundary
conditions which it imposes, rotations which would violate the boundary conditions
are ineffective. Tn molar theory only the six rotations which transform the domain of
molar space-time into itself are effective. As in the single frame, the physically real
rotations correspond to real values of ¢. It must be remembered that the EF, are square
roots of +1, so that in comparing EF-rotations with E-rotations, EF, corresponds
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to B, 1 or B, Fs Circular and hyperbolic rotations are respectively ¢ = e*£¥u%, and
= ¢*EFuu with 6 and u real. The six relativity rotationg in molar space-time are
q Yy P
g = e EpFut a0 with = 23, 31, 12,]

g = g%(EﬂFls+FﬂE15)u With ‘u' — 14, 24, 34. (79'4)

To obtain a symbolic representation of the outer product of two space vectors, we
associate one of them with the E-frame and the other with the #-frame. Thus con-
sidering two momentum 4-vectors p,;, p/s, their symbolic forms are taken to be

P = (Bysp15) + Bpspas, P’ = (Fisp15) + Fas s, (79-5)

and their outer product has the symbolic form
PxP' =XE Fipsp (v =1,234) (79-61)
Correspondingly the ordinary (unextended) energy tensor T, has the symbolic form
T=2E;F;2,T,, (79-62)

where a,, = + 1 or 4. For the real momentum vector ordinarily denoted by p,, p,,

Pg; Pg> W have Pis, Dos, Pag, Pag = 101, 1Pg> 1Py, Py; correspondingly for the real energy
tensor ordinarily denoted by 7, we have «,, = —1 for pressure terms, ¢ for momentum
terms, and + 1 for the density terms. If the mixed tensor 7,” is substituted, « « Decomes
+ 1 .for the pressure and density terms and +4 for the momentum terms. As the

pressure and density terms are the most important, we adopt the notation

Ty = ZE}L5'F:’5t = ZE;&EFV.ST;(,V’ - (7971)

BB, V3

where 7T} differs from the ordinary notation only in the momentum components which
are modified by a factor + 4. It should be understood that, notwithstanding the mixed
tensor on the right introduced to connect the symbolic with the ordinary notation,
(79-71) 15 a covariant tensor—the product of two cogredient vectors, or sum of such
products. In a symbolic rotation ¢{...) ¢, a vector 2E,p, necessarily rotates in the
same way as the coordinate axes to which the symbolic frameis anchored, and we cannot
make two vectors rotate contragrediently unless we use trangposes K, F to relate them
to the symbolic frame. The associated mixed and contravariant tensors are

because raising or lowering a suffix reverses the sign of a space-like component, and
transposing a matrix reverses the sign of a time-like component.

We here assume, as also in (79-4), that the coordinate axes are anchored in the
frames #, and F, in the same way, so that their respective rotations are ‘diréctly
linked’. Occasionally we introduce a contragrediently linked ZF-frame, in which the
effective rotations (79-4) are modified so as to make vectors in the two frames rotate
contragrediently; thereis a certain gain of mathematical symmetry, but contragredient
linkage is confusing for ordinary purposes.

Just as P is part of an extended momentum vector with 16 components, so 7' is
part of an extended energy tensor with 256 components. These reduce to 136 indepen-
dent components if 7}, is constrained to be a symmetrical tensor. For uniformity we

generalise (79-71) to Ty, = ZE, i, = ZE,F,T, (79-73)
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where 7,7 is loosely described as the ‘ordinary energy tensor’, although it is only for
a small selection of the components that any ordinary notation pre-exists.

Taking the F-frame to be right-handed, —iF; = 1. Thus we can express an
E-mnumber P = ZE,p, as an EF-number P = 2B, Fio(—1ip,). A vector given in the
E-frame can be transferred into the FF-frame in this way. It is helpful to regard an
EF-number as an E-number in which the coefficients instead of being taken from the
field of algebraic numbers are taken from the more extensive field of F-numbers.
Conversely, an £-number is & degenerate EF-number involving only one F-symbol
which, since it commutes with all the other symbols employed, is indistinguishable
from <.

If a strain vector S is expressed as an EF-number

S = ZﬂEﬁFmO'ﬂ, (79'8)
all the coefficients o , 8T8 real.

80. Chirality of a double frame

A double frame may be homochiral (Fyz = E,) or antichiral (F,, = —E,); but,
unless expressly stated, we shall consider only homochiral frames. The properties of
an antichiral frame differ considerably; in particular it has no interchange operator
(§81). |

A homochiral frame may be right-handed (E,; = F,;=1) or left-handed
(Byy = Fyg = —1). The &, F, are divided into 136 active and 120 dormant symbols, the
former being unchanged and the latter reversed in sign if the chirality of the frame is
reversed. Distinguishing the 6 chiral £, from the 10 achiral E, as in (55-7), the 136
active (achiral) double symbols are made up of the 10 x 10 products of achiral #, and
achiral ¥, and the 6 x 6 products of chiral ¥, and chiral F,. The dormant components
are so called because in an environment entirely without chirality, such as a neutral
uranoid, they have no physical manifestation.

The ¢ referred to in defining chirality belongs to an algebraic frame (1,4) which supplies
the field of complex numbers used as coefficients in the ZF-numbers. But just as 4 is
replaced by F;in (79-8), so in a general FF-number it can be replaced by the algebraic
symbol Gy, of a third frame; and the FF-numbers are then degenerate £F@-numbers.
This view eliminates the concept of absolute chirality (right- or left-handedness),
leaving only relative chirality (homochirality or antichirality) of pairs of frames,

symbolic or algebraic.
It would be easy to extend the construction of a double frame to triple or more
ighly multiple frames; and the description of a universe of 107 particles provides
scope for highly multiple frames if we care to tackle it that way. But we must not let
multiple frame building run riot. The double frame provides for the representation of
symmetrical tensors of the second rank, which in our classification includes tensors
of the Riemann-Christoffel type. An BF G-frame would provide for symmetrical tensors
of the third rank; but neither third nor higher rank tensors form any part of our current
apparatus of deseription of the physical universe. The method of analysis has apparently
been designed to avoid multiple frames. When a system is too complex to be repre-
sented by a second rank tensor, it is treated as a combination of simple systems

represented by second rank tensors together with interactions that can also be
EFT I1
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represented by second rank tensors. The epistemological reason for this pre-eminence
of double frames, or equivalently of second rank tensors, will appear later.

This brings about a practical distinction between dormancy in an E-frame and
dormancy in an EF-frame. It would be premature to drop dormant components in
the E-frame; because they can combine with dormant components in the F-frame to
form active components in the double frame. But the double frame is final; its dormant
components get no chance of combination, and may as well be dropped at once. This
is a result of method, not of necessity. They would contribute to active components in
a triple frame; that is to say, in a slightly chiral environment the dormant components
of a second rank tensor have physical manifestations which could be represented by
third rank tensors. But physical method does not use these third rank tensors; and,
although it is bound to account for the physical manifestations it does so in a way
which does not connect them with the dormant components.® This evasion of third
rank tensors is connected with the insolubility of the problem of three bodies. Broadly
speaking, there is no three-particle theory in physies; and triple systems are treated
by adaptations of two-particle theory, using approximate perturbation methods.

Thus in the normal application of symbolic frames to fundamental physics we do
not contemplate any extension beyond double frames. The 120 chiral components of
tensors are not only dormant but dead; and there is no distinetion between right- and
left-handed homochiral frames.

One reservation must be made, although it will not concern us until Chapter x1iz.
There is a quadruple ZF GH-frame in the background, though it does not figure in the
analysis. The double probability distributions that we deal with arise from degeneration
by averaging of quadruple distributions (§25); and similarly the double frames arise
from the degeneration of quadruple frames. In a measurement resulting from a casual
comparison of an object-system with a comparison system the object-system would be
represented by EF-numbers and the comparison system by GH-numbers; but in
systematic measurement the comparison system is simplified and standardised, so
that its only characteristic is an invariant scale with symbolic coefficient Gy H;g = 1.
There is one special investigation, namely, the evaluation of the cosmical number in
Chapter x111, which stands apart from the rest of physics because of the much higher
approximation involved; and in it the non-degenerate quadruple frame is used. The
dormant components of the double frame must then be resurrected, since they are given
opportunity of combination. The full number of components, 256, appears explicitly
in the formulae of Chapter xu1. In all other problems the dormant £F, are to be
considered non-existent.

81. The interchange operator
Let I=31XEF, (p=1,2,..,16) (81-1)

Consider the product E, IF,. It has 16 terms of the form tE E, . F F,. If B, E, anti-
commute, F,, F, anticommute, and the term reduces to the form (¥ (—F,). It B, &,

& There is & similar evasion in the simple frame. An electron has dormant momenta which will have a
physical manifestation if the environment includes a proton. Butb the interaction of the electron and pro-
ton is deseribed by interchange rotation in the intractle, instead of by building a second rank tensor out
of the dormant momenta of the two particies.
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commute, ¥, F, commute, and the term reduces to the form 1B, E, . F. F . The frame

w Ly
being homochiral, #,,#; = —1; so that in either case the term has the form — i\E_F,,
and the 16 terms are the terms of — I in a different order. Thus
BIF =—1. (81-21)

Again, 1E, F, consists of the terms of — T, except that (fory = 1 6) the eight terms which
anticommute with Z, are reversed in sign. In the sum =, I E, F, each term of — I occurs
eight times with correct sign and eight times with reversed sign, except that — 18, F,
occurs 16 times with correct sign. Thus X, IE, F, = 16(~— 1406 Flg) = 4. Hence

I? = IR F, = 1. (81-22)

Multiplying (81-21) first by initial 7Z, and secondly by final F, I, we obtain
£ =IEI, E =IF1. (81-23)
Hence EF =IFIIEI=IFE)I (81-24)

Thus the operation I(...)I interchanges the - and F-frames. Since 2 — 1, the
operation can also be written as I(...) I-1; it is therefore one of the relativity rotations
q(...)¢* of the double frame. We call I the interchange operator.

- The distinction indicated by the letters E, F might alternatively have been indicated
by suffixes. In conéidefing interchange, it is useful to start with an unlabelled frame
I',, and regard the 1 or 2 strokes which turn I"into ¥ or E as suffixes 1 or 2. Then the
momentum vectors p,, p), of two unsuffixed particles are represented, symbolically by
2T, p,, ZT,p,; when the particles are suffixed these become 2F,p,, XH,p,, and inter-
change of suffixes is effected by the operation I(...) 7. Thus the present mterchange
operation is the same as in § 25, symbolic frames taking the place of comparison particles
ag carriers of the suffixes. 3

In §25 interchange was regarded as continuous. Continuous interchange is here
given by the rotation g — eilr, (81-3)
By (81-1), I isreal; so that for a physically real rotation » must be real, and the rotation
is hyperbolic (§ 79). Complete interchange g = I isnot included in (81-3); in exponential
form itis g = €20 with # = 7. Except for the one value # = 7 thisisnot a physically
real rotation. _

Since there is no circular interchange rotation, there cannot be a steady state in
which the only rotation is a circulation of suffixes. This could have been foreseen. For
interchange momentum has been identified with Coulomb energy; and two particles
with Coulomb energy cannot form a steady system unless there is in addition. a spatial
rotation. Steady interchange angular momentum occurs in the same conditions as
the angular momentum components p,,, sy, P35, which also correspond to hyperbolie
rotation; by themselves they would involve a hyperbolic rotation which cannot persist,
but they can occur as components of a steady circular angular momentum in a plane
tilted with respect to the adopted reference frame.

The interchange operator can be factorised. We have I = — I, I,, where

4 = $(Uyy Ty + By Fiyy + By, iy — I)_:}
1
3

(8141
(Eas Fys + Bgg Fyo + Byy g~ 1) ( )

I1-2
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This is easily verified by straightforward multiplication. Or, in the notation of (60-5),

L= %(cléﬁf;zé;-iég?,z;mn,}

L= (0,6} + 0,05+ 6,6, —1). (81-42)

In current, quantum theory the spin components o, o, 0, are defined as quantities
whoge square is + 1, so that o, = 1{;, ete. Treating the &’s analogously,

Ga:’ Uy’ Uz = 7:(€1, §2= ga): Tw Ty Tw = ?’(ﬁlﬁ 627 63). (81'5)
In this notation L =—#{l+(o,0")}, Li=-HHl+(z,7)} (81-6)
I=-—3{1+(s,a}{l+ (77} (81-7)

The factor I, is Dirac’s interchange operator,2 which is used in a great many in-
vestigations.
We shall call o the spin, and T the co-spin.

82. Duals

When matrix representation is employed, the commutative produet £, F, is repre-
sented by the outer product of the matrices £, ¥,. This is an array of 4* elements which
we denote by (&, £)).5,,- The array is called a double matriz. Every EF-number is
represented by a double matrix, and every four-deep double matrix represents an
EF-number. It is convenient to give names, columns, rows, piles, tiers to the four-
dimensions of the array; so that the first suffix gives the number in the column, the
second the number in the row, the third in the pile series and the fourth in the tier series.

The same system of matrix representation, e.g. that given in §71, is used for &,
and F,; for it would be misleading to disguise the equivalence of the frames by gratui-
tously introducing a difference in their representation. Asin§ 81, we denote the abstract
matrix by I, By changing the notation to E, we associate it with columns and rows
in the array, and by changing the notation to F, we associate it with piles and tiers.
But the notation I, is retained if the association is already indicated by the suffixes

% By, 0 Thus (BuE)upys = (T)og (e (82:1)
It follows that (BB )yaas = (D)ys (Dap = (BB )y (82-21)
and (81-24) can be expressed symbolically by

' (ydap) = I{afyd) L. - (82-22)

The transpose P of a simple matrix P is obtained byinterchanging rows and columns.
Correspondingly the double matrix obtained by any interchange of columns, rows,
piles and tiers of a double matrix 7' is a transpose of 7. The associated space tensors
and strain tensors in (74-1) are all transposes of one another.

We call the transpose obtained by the permutation (xdyf) the dual of 7', and denote

it by 7. Thus Taﬁya Ty (82:31)

[r
& Quantum Mechonics, 2nd ed. p. 226. It was first given by Dirac in Proe. Roy. Soc. A, 123, 724, 1929.
The complete interchange operator wag introdueed by Temple, Proc. Roy. Soe. A, 127, 342, 1930. It was
factorised, and the relstion to Dirac’s operator pointed out, by Eddington, Proc. Boy. Soc. A, 138, 39,
1032, The complete cperator is now often used in nuclear theory,
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We denote the dual of B, F, by C,D,. Thus

(Ey,Er)ocﬂyB = (Fp)aﬂ‘ (ﬂ)yaa (G};Dv)aﬁ'y& = (I;L)aﬁ (R)yﬁ' : (8232)

Then if 7' = 2E F,t,,, we have T' = 2C,D,t,. We can also express T directly as an

E-number ZE, Fi,,; so that there are equivalent forms
T=2E I, =20,D,
Il 4 Lt 4 2-
T = 3K Ft, = 3C,D, 1, (82:33)
Since (C,D,)ypys 18 & 4* array it can be expressed as an EF-number X, B ¥, v,, ..;
or it can be expressed in the equally general form

C,D,=E, X, EFw

e (82-4)
which is found to be more convenient. We shall determine the coefficients w

Inserting suffixes (82:4) becomes
(Fp)mﬁ (11)%6’ = Ea‘,r( Fp Fo’)mﬂ (I: ‘r"r)ya w;w.o’r
Multip]y‘ing both sides by (I'A Fp.)ﬁu (.I-:, .I_:,)a,y,

the left-hand side reduces to (I\J,.T,.L I 1)y = (I31,)p = spur (I, T)).
The right-hand side reduces to Z, ,w,, . spur (I3 1,1, ) spur (I, 1,1, I7), or

Ly e Wy orSpur (I3 I )spur (7, I7). The only non-vanishing term is that given by
o = A, T = p; so that the right-hand side is 16w and we have

v, et

v, Ap?
16w, ,, = spur(n )= —4, if A=p,
= 0, if A&%p.
Inserting this in (82-4),
D, =8B FE(-12, B F,) = 5EﬂE,I. (32-5)
Hence, by (82-33), T=—TI. (82-6)

We can now express the following permutations in terms of I operations

(@8yf) =— (.01, (ypad)=—1I(..), (ydapf)=1I(.)L. (82-7)

An EF-number T, is symmetrical, i.e. symmetrical with respect to the K- and
F-frames, if 7, = IT, I. Multiplying both sides by 7, this gives I7, = T,I. Similarly an
antisymmetrical ZF-number 7, satisfies 17}, = — T, I. Any EF-number can be divided
into symmetrical and antisymmetrical parts satisfying

IT =11 IT,=-T1I (82-81)

Setting ¥, = HEEHEE), &, =1(EL-EF), (82:82)
and introducing single-suffix notation y,, £,, we can write
136 120
278 = 21: 'yju(ts)p,) Ta = % C,u(ta)‘u,’ (82-83)

A gymmetrical rotation ¢, = e7»¥ does not alter I; but an antisymmetrical rotation
q, = ¢ gives I' = g, Iq;t = Iq, % Hence the duals 7' = —T1, 7" = —T'] of T and
7" do not satisfy 7" = ¢T'q~ unless ¢ is a symmetrical rotation. The relation of duality
is invariant ouly for symmetrical rotations.
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The algebraic component H;; Fiot¢ 1o of T will be denoted by qs 7' and called the
quarterspur, though the name is no longer strictly appropriate. For any component,

by = qs (&, F,T), (82-91)

or in matrix notation by = To(L W) pa (1)sy Topyse (82-92)

83. The CD-frame

The symbols & F, are converted into their duals €, D, by interchanging rows and
tiers in the 4* array. In a certain sense the €, D, form a frame equivalent to the ZF-
frame; but the equivalence belongs to a different order of ideas from anything hitherto
contemplated. We can apply the same multiplication table to the OD-symbols as to
the EF-symbols; bui the operalion of multiplication is different. Multiplication of two
4% arrays gives different results according as we express them as EF-numbers and use
the £F-multiplication table or as C'D numbers and use the CD-multiplication table.

In particular the number 1, identified in the two frames with — 7, F,, and —Cyz Dy,
has different meanings. In the EF-frame it is the unit double matrix §,78,%. Applying
the permutation (xdyf), the number 1 in the CD-frame is the double matrix 8,? R
Correspondingly numbers which are algebraic in the EF-frame are not algebraic in
the OD-frame.

By (82-6) —1=1.71=1 I=—-1.T=-1, (83-1)

so that —1 (or Ky ¥y6) and I are duals. By (82-5), Cy5Dy5 = I. Also, if Iy, = $X,C, D,
we have I,p = 1= —1; so that

- CieDrg = Ipz, FhgFis = Iop. (83-2)
But Iy, is not the interchange operator for the C'D-symbols unless we interpret the
multiplieations in the operation I p(...) Iyp as CD-multiplications.

To admit two kinds of multiplication would lead to a great deal of ambiguity; and
we shall therefore not recognise C'D-multiplication formally. The symbols C,D, will
be used as a notation for the duals of the X, ¥, and not as elements of a frame. Tt is,
however, worth while to keep in mind that there is a parallel view which would regard
the dual world as fundamental and the EF-world as derivative. If we do not employ
it, it is because a continually shlftmg view-point, though sometimes illuminating, has
practical disadvantages.

Let P =2E p,, P'=2E, p, be two vectors in an E-frame. To form their outer pro-
duct we transfer P’ to an F-frame by the transformation IP'I = ZF, ). Then

PxP' =P .IP'I = PI.P'I=Pp, (83:3)

by (82:6). The outer product of two veclors s the straight product of their duals. The con-
verse—that the straight product of two vectors is the outer product of their duals—
is not true. The dual ( — PI) of a space vector P is a space tensor, and the outer product
would be a tensor of the fourth rank.

The transpose given by the permutation (ey/i8) is very important physically, though
mathematically it is not so simple as the dual. Tt will be called the crossdua,l and
denocted by 7. We have

(O;rDv)aﬂ?ﬁ = (O,u,Dv)or.ﬂ&'y ( v a'y&'ﬂ = ( ﬂE)ayﬁai
so that C,D,= (& pE,)X. (83-4)
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7T =XEFt, I*=2 C,Djt,, so that C, D, is the cross-dual of E, F; we find

ptv
0, D, =—-E,IF, (I=}XE,F). (83-5)
This is proved by the same method as (82-5).
By (74:1), we find Z‘l,)o — PO, Zo—TX, (83-6)

Thus the dual and cross-dual relations are used to derive strain tensors from space
tensors.

Although vectors and tensors are primarily defined by transformation properties,
we continue to array physical characteristics as momentum vectors and energy tensors
when there is no intention of applying transformations. The utility of the complete
energy tensdr as a standard arrangement of 136 different characteristics of a particle
is not lessened if, as usually happens, our formulae postulate a special time axis which
it would be illegitimate to change. When there is no question of transformation, we
may regard ‘tensor’ as a courtesy title. The value of this courtesy nomenclature extends
to the correspondence of strain vectors and space vectors, and the association of groups
of tensors in (74-1). It is convenient to have a simple way of indicating reversal of sign
of certain components of 7, by lowering a suffix, although we may be quite uninterested
in the fact (which is also expressed by the notation) that the resulting tensor 7}, is
covariant.

By (74:1),

(%O)aﬂyﬁ = - (Tua)aﬂ'ays (Zoo)acﬂya = - (Zéo)aﬂay- ' (83-7)
Thus there is a certain justification for describing Zy° as Zgy, which gives (83:6) the
more symmetrical form TP =T, Zhy= T, (83-8)

This is legitimate if Z{, is a courtesy tensor. The lowering of the second suffix in zy
here indicates just the same reversal of sign of components with space-like v, as the
lowering of the second suffix in T”. But this sign reversal has not the same effect on
. tensor character in a strain tensor as in a space tensor; and Zg, remains a mixed tensor.
Thus when transformations are contemplated, we have to give it the more suitable
notation Z0.

84. Double-wave vectors

In an #F-number 1. pys the first two suffixes refer to the F-frame and the second
two suffixes refer to the F-frame. These form separate chains in matrix multiplication;
so that the full notation for a rotation 7" = ¢Tq-1 is

T;ﬂyﬁ = ch'yg Te(;a;ﬂ?wﬂ?}?a- (84']')
- If T is resolvable into factors which transform separately, the factors are double-wave
vectors ¥, X with transformation laws

For = ooyt Yor - Xips = Xypoyon- (84-2)

By adapting the asterisk notation, the transformation laws can be put in a form
similar to the laws (73-3), (73-4) for simple wave vectors '

Y= q¥, =P, X*= X', X' =X, (84:31)
Whe].'e q‘!ﬁ?fg = Qﬂmay, (84'32)
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g being obtained from g by changing E,, F, to E,, F,. By anslogy ¥, X are called
respectively covariant and contravariant double-wave vectors. If & is another
covariant double-wave vector, the outer products

T =W¥YX* Z=Yo* (84-41)
are mixed and covariant double-wave tensors with transformation laws
i- T =qTq?, Z'=qZq. (84-42)

Mixed and covariant simple wave tensors are identified with space vectors and
strain vectors; and similarly mixed and covariant double-wave vectors are identified
with space tensors and strain tensors. But when defined as double-wave vectors the
space (strain) tensors have a more extended range of transformation than when defined
in the ordinary way as the outer products or sums of outer products of space (strain)
vectors. It is not uncommon for the range of transformation of a tensor to be more
limited in some applications than in others, the circumstances being such as to make
the more general transformations ineffective; and we shall continue to use the names
‘space tensor’ and ‘strain tensor’ for 7' and Z although the transformations have been
generalised. But the classification of a space tensor or strain tensor as covariant,
nixed or contravariant introduces a limitation of ¢ to such forms as give a linked
rotation of the #- and F-frames. The forms are

gocﬁfyﬁ = Qaﬁ g’yﬁ‘ or qgcﬂﬁ';c?l' (84' 5)

Since the suffixes «, § refer to the E-frame and vy, & to the F-frame, the rotation,
G.pys ives the same rotation to the two frames. We call this cogredient linkage. The
rotation g,,7.;* makes covariant space vectors in the F-frame rotate the same way as
contravariant space vectors in the H-frame. We call this contragredient linkage. In
contragredient linkage the frames are anchored so that E,; and Fy; are opposite direc-
tions along the time axis; and the frames rotate so that they remain opposite.

Contragredient linkage is an intolerable complication for ordinary purposes; and,
for example, it does not harmonise with the point of view (§81) that ¥ and F are
derived from an unlabelled frame I merely by attaching suffixes. It is therefore only
employed exceptionally. But it makes the general relations of space tensors and strain
tensors more symmetrical. The reason is that a two-particle system must consist of
particles of opposite charge if it is to be separable from its environment. This would fit
more symmetrically into an antichiral double frame; but, since we only use homochiral
frames, the same symmetrisation is effected by anchoring the #- and F-frames with
their chiral axes K, F,; in opposite directions. This involves anchoring E;, Fi; also
in opposite directions, an even number of reflections being necessary if the chirality is
unchanged.

Consider first contragredient linkage. If ¥, =0, Xg = xzPs, the trans-
formation (84-2) with ¢ = g,,7,,' breaks up into :

Vo= Que¥er f"fy = @;'glwg, X,’s = Xﬂg‘q_ﬂl’ ‘}’53 = Do Qps- (84-6)

Hence by (73-3), (73-4), ¥, ¢ are covariant and w, x are contravariant wave vectors.
Then 7,5 5 = 7, X gy = ¥ X*w7¢;, which is a mixed space tensor 7,° by (74-1).



Double Frames ' 169

If, on the other hand, 1jfawy and 9, are both covariant double-wave vectors ¥, @,
we have ¥, x covariant and w, ¢ contravariant. Then Z,, , = ¥, Dgy = ¥, X079,
which is a mixed strain tensor Z°.

Next consider cogredient linkage. This will reverse the characters of the two wave
vectors in the F-frame, which have suffixes vy, ¢; so that

Tmﬁya = Wa%ﬁwygéa, Zaﬁya = ?ﬁaXﬂwyﬁéaa (84+7)

showing that 7" and Z are covariant space and. strain tensors 7, Zg,.

Since the strain tensors included in the group of tensors associated by transposition
of suffixes are mixed strain tensors, the agsociation of a strain tensor and space tensor
can only be invariant for the rotations g,,7,;* which represent contragredient linkage.
But commonly we are not inferested in the invariance of the association, the tensor
- appellations being ‘courtesy titles’; and it is then unnecessary to introduce the
complication of a contragredient anchorage of the frames.

A space tensor 7}, which is the product of four wave vectors may either be factorised
into two space vectors U, V or into two double-wave vectors ¥, @ the relation being

(Too)apys = UagVys = ¥y Ppse (84-81)
Performing the transposition («yf8) we obtain the cross-dual
(Z0)apys = FopPys = U oy Vs- (84-82)

Denoting the strain-vector factors of the cross-dual by UX, VX, and the double-wave
vector factors by WX, %, we have the relation

U=V, VX=@, PX=U, =7V, (84-9)

Since the cross-dual relation is not invariant, (84-9) is not a tensor equation: Thus
although ¥ and @ are the strain-vector factors of Z° they do not transform as strain
~vectors.

85. The 136-dimensional phase space

Of the 256 symbols ¥, F,, 136 are real and 120 imaginary. The real symbols are the
100 products of the 10 imaginary E, and 10 imaginary F, and the 36 products of the
6real £, and 6 real ¥,.

The 136 real symbols are obtained by multiplying the 136 achiral symbols by #,; Fy;.2
The correspondence S = —P#,; of strain vectors and space vectors.gives a corre-

spondence 7 = TH,F, (85-1)

of strain tensors and space tensors. Thus the separation of achiral and chiral (active
and dormant) components of a space tensor corresponds to the separation of real and
imaginary symbolic coefficients in the corresponding strain tensor.

Corresponding to the 10-dimensional phase space associated with a simple frame, we
have a 136-dimensional phase space associated with a double frame, the coordinate
axes being assoctated with the real symbols; so that the position vector in phase

space is , .
X = XEF,x,, (85-2)

& The ten imaginary &, are obtained by multiplying the ten achiral (mechenical} &, by F,.
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the accent indicating summation over the real EF,. As in §75, we seek the trans-
formations which transform phase space into itself.

Phase space is transformed into itself by geometrical rotations in any of its 9180
coordinate planes. These are either true rotations ¢X¢* or pseudo-rotations ¢Xg,
according as the axes in the plane have anticommuting or commuting symbols. It
is easily found that if two real FF-symbols anticommute the product symbol giving
the plane of rotation is imaginary, and if they commute it is real. Thus both kinds of
rotation are included in ¢X7g, if the bar is defined so that

EF, = — EF, (EF,imaginary), EF, = EF, (EF, real). (85°3)

We find at once from (85:-3) that E’ F, = EHE,, where E , ¥, have the usual meaning;
so that _

(BF, )aﬁ"yd‘ = (EF, )ﬂo&é‘w ?aﬁ'yd‘ = gusy- (85'4)
ThlS agrees with the definition of ¢ in (84-32); and accordingly the transformation
g(...)q, which gives purely internal rotation of phase space, is that of a covariant
double-wave vector or strain tensor Z, as shown in (84-42). Thus the phase tensor,
L.e. the physical tensor which is represented or partly represented by a point in phase
space, is a strain tensor. For a simple frame, the eorrespondmg result (§ 75) is that the
phase vector is a strain vector.

The general theory of 136-dimensional phase space follows by analogy with 10-
dimensional phase gpace. The Z,, F, transformation is & scale transformation, and the
other 255 transformations are unitary, We can introduce an ‘ orientation phase space’
of 135 dimensions; but it contains singular peints or loci, and is not closed. The phase
tensor may have the full number of 256 components; it is not supposed that the un-
represented components vanish, but that we are uninterested in their probability
distribution. The phase tensor being identified with a strain tensor, the unrepresented
part is identified with the dormant part by (85-1); and for that reason it is not con-
cerned in the strains occurring under standard conditions.

We see therefore that the 136-dimensional phase space represents the possible
straing produced by a ¥4 particle in the system to which it belongs in the same way
that the 10-dimensional phase space represents the possible straing produced by a
V.o particle; and that the limitation to 136 or 10 dimensions is due to the omission of
components which are dormant in the conditions contemplated. The system providing
the planes of simultaneity is characterised by the energy tensor E,, ¥, or the momen-
tum vector £y;; either description signifies that it is at rest relatively to the adopted
time axis.

The phase tensor Z is mixed or covariant according as we adopt contragredient or
cogredient linkage. Adopting contragredient linkage, we can set Z,° = i ¢ 07X
Then the cross-dual permutation gives a space tensor Ty, = ¥,w’¢, x°. The active

phase tensor, whose symbolic coefficients satisfy EF; = EF,, satisfies

(Zoo)oaﬂ'y& = (ZOO),BOL(??' (85'51)

Hence (interchanging the second and third suffixes on both sides) the corresponding
art of 7}, satisfies :

PRI O To (Toodapss = (Lo prar- (85-52)

By (82-22) this is the condition Ty, = 17}, for a symmetrical tensor.
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In molar relativity theory, symmetry is an essential property of an energy tensor.
In microscopic analysis there is no objection to introducing antisymmetrical terms in
the individual elements which cancel in the molar average;* but in the standard
particle, which is defined simply as the carrier of an element of molar energy tensor,
the symmetry condition must apply. Its energy tensor (in classical designation) has

136
therefore theform 7, = 3"y u(ts),» found in (82-83); and the number of degrees of freedom
1

is accordingly 136. The foregoing result shows that, in order that all possible values
of 7, may be represented by points in 136-dimensional phase space, the phase tensor
must be the cross-dual of 7). We have therefore the fundamental relation

Zy® = (Tpe)* (85-.6)

between the phase tensor and the classically designated energy tensor.

If we introduce other types of microscopic particle, not so directly connected as the
standard particle with the molar energy tensor, the dormant components of the phase
tensor correspond to antisymmetrical components of the classical energy tensor. It
is therefore possible to give an interpretation to antisymmetrical terms in a classical
energy tensor if chirality is not exeluded from the environment. In molar relativity
theory it is well kuown that the symmetry of the energy tensor, and more generally the
symmetry of the Riemann-Christoffel tensor, is the result of postulating Riemannian,
i.e. neutral, space-time; for when a generalised R.C. tensor *B yevos 10 Which pe is
not symmetrical with vo, is admitted we pass over to Weyl’s geometry or to the
author’s affine extension of it, which embodies electromagnetic potentials as well as
a metrical tensor in the geometrical frame.?

86. Uranoid and aether

From an energy tensor 7,° we can derive strain tensors by two fundamentally dif-
ferent processes. ‘Correspondence’ gives a strain tensor TE,; ¥y, which will be called

Z,; ‘association’ gives a strain tensor 7 = — 71 , which will be called Z,. Thus

Zy=TE,Fy, 7,=—TI. (86-1)

If the strain tensor represents strains produced by the particle carrying 7' in a system
of which it forms part, we must interpret Z, and Z,, ag the gtrains produced by the
particle in two different types of system 7 and A. The feature of the system U is that
its mechanical characteristics define a time axis with corresponding planes of simul-
taneity; if it has any other properties these are assumed not to affect the strains Z,.
The system U is therefore fully represented by a momentum vector Ey;m, orin a double
frame by an energy tensor Hy;Fy;p; that is to say, it is a particle or assemblage of
particles at rest. Since the standard uranoid is such an assemblage, Z,, is most simply
defined as the tensor describing the strains produced by the particle in the standard
uranoid U.

Since the energy tensor of the system U is a multiple of E,, F,., we tentatively assume
that the energy tensor of the system 4 is a multiple of — I. To determine the nature

* For example, the bi-particle composed of a V1, object-particle and a comparison particle carries an

element of energy temsor which is usually unsymmetrical.
Y Mathematical Theory of Relativity, § 92.
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of A4, consider the part of the energy temsor — I which is recognised in molar relativity
th , namel
O TS B g+ By P} By Fis ko By Fis ). (86-2)
By (79-71) this is the energy tensor ordinarily denoted by
Ty =—338,. (86-3)

Tt is invariant for Lorentz transformations; so that the mechanical characteristics of
system 4 are indifferent to orientation in space-time. As we should ordinarily say, the
velocity (a momentum) is entirely uncertain. The terms of the energy tensor are the
mesn gquare values of the uncertain momenta (the linear mean values being zero).
In the full expression I = $XE F,, this applies to all 16 components of the momentam
vector; so that system A can be described as a distribution whose extended momentum
vector is entirely uncertain. _

The systems adjoint to Z, and Z, are therefore extreme opposites, the first having
an exact momentum vector (along the time axis) and the second an entirely uncertain
momentum vector. By Heisenberg’s principle, the first has entirely unicertain position,
and the second (if fully observed) has exact position.

The strain vector was originally introduced in order to associate with the ohject-
particle an extraneous time direction independent of its own momentum. In Z, this
purpose is nullified, because the particle is associated with a system which, like empty
space, does not discriminate any particular time direction. The energy tensor (86-3)
of system A has just the same form as the cosmical energy tensor T} = —(A/8mk)d);
so that Z, describes the strains which would be produced by the particle in the carrier
of the cosmical energy tensor. The carrier of the cosmical energy tensor is commonly
called empty space; but I do not think the modern fashion of calling the aether ‘empty
space’ is conducive to clearness, and T shall here keep the clagsical name. System U is
the uranoid, and system 4 is the aether. Or, in another familiar terminology, system U
is an Einstein universe and system A4 is a de Sitter universe. _

It is worth while emphasising that the best known and most crucial difference between
matter and aether (which are both carriers of energy tensors, strains, ete.), namely that
the former provides a reference system for velocities and the latter does not, is exhibited
directly in the energy tensors X, ¥, and — I, since &,  F,, defines a time axis, with
corresponding definitions of rest and simultaneity, and I is completely indifferent to
axial orientation. Indeed if we had set ourselves the problem of describing mechanically
a medium which does not provide any reference system for the measurement of
velocity and angular velocity, we should have found directly that such a medium is
specified by an energy tensor proportional to 1.

We can see in a general way that Z, is the appropriate strain tensor when 7' is the
energy tensor of a quantum particle. For the quantum particle is a superposition on
the standard uranoid, and in strain representation is the embodiment of a set of gtrains
in U added to the undisturbed U. Equally Z, is the appropriate strain tensor when 7'
is the energy tensor of a relativity particle. For in relativity theory each particle
independently is the source of a “field’ or state of strain of the aether; and the action
of one element of matter on another is transmitted through the aether. The two ways
of introducing a strain tensor are therefore closely connected with the transition from
the classical to the quantum point of view. In further developments we have to con-
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sider this in conjunction with the change of designation introduced by the quantum-
classical analogy.

The treatment in this section is introductory. A fuller understanding of the subject
will be reached later in this chapter. '

87. The Riemann-Christoffel tensor

Tn ordinary tensor calculus, a vector A% taken by parallel displacement round the
perimeter of a surface element 48" receives an increment

ddr = 3%, , A48 B, - (871)

This may be taken as the mathematical definition of the Riemann-Christoffel tensor
B, In order that it may be a physical definition, parallel displacement must be
defined physically. This implies that there is at every point a physical reference frame,
the criterion of parallel displacement being that the components of the vector referred
to this frame remain unchanged. In general the physical frame which determines
parallel displacement ig not uniformly related to the geometrical reference frame to
which the tensors in (87-1) are referred. Tt consists of local frames changing from point
to point, because parallelism (in tensor calculus) is defined only for infinitesimal
distances, and is not an integrable relation.

We shall employ rectangular coordinates in (87-1). The Riemann-Christoffel tensor
implies curvature; but we shall only need to consider a small region in which the effect
of curvature on the coordinate system is negligible.

Let the surface element be a small circle of radius r in the coordinate plane x,z,
having its centre at the origin, so that 48" reduces to two components

A8y = —d8% = 7r2,

Let the vector be initi&ﬂy along the axis @, so that it reduces to one component A=,
By receiving an increment dA? (£ + «) the vector is rotated in the plane x_ x, through
an angle d¢'*# given by

A, 40 = dAF = ar?d, B,

so that _ dg'*f = —mr?B*F (87-2)

the R.C. tensor being antisymmetrical in the suffixes «, £.
Thus if the carrier of 4# deseribes the circle with angular velocity w??, the vector
itself will rotate with angular velocity ©'*#, where

w'eh

e i 1r2Baf . (87-3)
In general the whole angular velocity o’ will consist of a number of components
w'#f in different planes x,%,.

In this motion the components of 4 relative to the physical frame undergo no change.
Tt follows that ' is also the local angular velocity of the physical frame. The R.C.
tensor determines a linkage between angular displacements of the object-particle
carrying A* and angular displacements of the physical frame. As we should ordinarily
say, & is the recoil of the physical frame due to the motion w of the object-particle.

The angular velocities w, o’ are relative to the geometrical reference frame.
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As an example, consider rotations in the plane x,x,. If m is the mass of the object-
particle, its angular momentum is £2%* = mr®w?3; hence, by (87-3),

W' = —(BBy,[2m) 2%, (87-41)
The physical frame recoils as though it had a moment of inertia 2m/B%,;. In an Einstein
universe the value of B23,, is By?; so that the effective moment of inertia of the frame
is then ¢ = 2mE3, (87-42)
This is four times the moment of inertia of a mass m spread uniformly over the hyper-
sphere. _

In this interpretation of the R.C. tensor we make no hypothesis. We have only
translated the common interpretation in terms of curvature or non-integrability into
an interpretation in terms of recoil. The existence of two equivalent interpretations,
one geometrical and one meghanical, is a consequence of the unification of geometry
and mechanics in molar relativity theory. The geometrical interpretation is followed
up in general relativity theory, where it leads to far-reaching developments. Here we
follow up the mechanical interpretation. We need a definition of the R.C. tensor which
will survive when the curvature representation is replaced by a scale momentum and
phase coordinate in a fifth dimension. By the mechanical definition the R.C. tensor
becomes an array of coefficients giving the relation between angular displacements of
an object-system in various planes and the resulting recoil displacements of the physical
frame. In elementary dynamics these relations would be fixed by the moments of
inertia of the two reacting systems. From the experimental point of view, our object-
particle describing a small circle is a test body which enables us to apply a known
amount of angular momentum? and study the recoil. This is the method which would
be used in practice to investigate the coefficients of inertia of an object. Thus the R.C.
tensor is to be regarded as a description of the inertial characteristics of the physical
reference frame.

We have allowed for ouly one mobile carrier of object-vectors; so that it is implicitly
agsumed that each object-particle has its own physical comparison frame recoiling
independently. The individual frames correspond to the comparison particles. A com-
parison particle in the standard environment has a uniform probability distribution
throughout space. In an irregular environment the distribution will be non-uniform
and the coeflicients of inertia will be modified; this modification is shown by the devia-
tion of the value of B#, _ from the value in the standard Einstein uranoid. We call the
whole aggregation of comparison particles the ‘comparison fluid’. The mean recoil of
the comparison fluid due to any one object-particle would be «'/N. Thus if a mean
physical reference frame defined by the comparison fluid is employed, the recoil is
exceedingly small, as we should expect. But in this case the cause of the recoil is that
somewhere in the universe there is a particle which has been given an angular momen-
tum. £2. The chance that this is the particle, carrying the vector 4# whose change we
have been studying, is 1/N. We can therefore equivalently regard (87-3) as the relation
between the rotation w'/N of the whole comparison fluid and the expectation rotation
w/N (i.e. 1/N chance of a rotation w) of the particle under consideration.

® More strictly a known amount of the nameless quantity of which angular momentum is the time
derivative, which like angular momentum is conserved. We are handicapped by poverty of nomenclature
in mechanies, and have had to use » instead of 8, not because the time differentiation is relevant, but
in order to cbtain quantities with familiar names.
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According to our formula any particle when given the rotation o produces the same
recoil of the physical frame; so that by this criterion all particles have the same mass.
This is in accordance with our view that the currently recognised differences of mass are
due to multiplicity factors improperly absorbed into the mags in adapting fundamental
dynamics to experimental problems. By (87 *42) the moment of inertia of a comparison
partiele in the standard uranoid is four times that which would be obtained by spreading
its mass (assumed to be the same as that of an obj ect-particle) uniformly over space.
The factor 4 comes from the duplication of the matter of the universe in our analysis,
each particle being counted as an object-particle and also as part of the recoiling
environment of other particles.

When B#,, contains non-diagonal terms the recoil is not in the same plane as the
object-rotation—as happens in elementary dynamics when the momental ellipsoid
has unequal axes. A diagonal term may be negative, indicating a ‘recoil’ in the same
direction as the object-rotation. Linear displacement in space or time can be regarded
as angular displacement about the centre of curvature of space. Since the symbols
associated with these displacements are B, Ey;, By, E,,, the terms in the R.C. tensor
which determine the corresponding recoils are B, B®,,, B%,, B . so that for
time displacement, 45/ — _ LR3 BIS,_ (87-51)
It would be nonsensical to admit a time interval between the object and its reference
system. We must therefore make it a condition that the recoil drives the frame forward
in time, keeping pace with the object-particle. Thus w'% = %, and

B, = —2/RZ. (87-52)
This result, applying to the Einstein universe, cannot be verified directly, since the

component B%,; is not included in the usual four-dimensional R.C. tensor; but it will
be useful in interpreting the extended R.C. tensor.

88. The de Sitter universe

For the sake of uniformity with previous formulae we shall use B ,e'” rather than
Bre,,; B> relates covariant angular displacements 0,5, 0, in the same way that
B, relates contravariant angular displacements. '

In symbolic form the R.C. tensor is

By, = B, F, B>, (88-1)

HE~ O
where, as in (79-71), B, »* agrees with the ordinary notation as regards pressure and
density terms, but differs by a factor 4 as regards momentum terms.2 The form (88-1)
exhibits the ordinary R.C. tensor as part of an extended tensor with 2 great many
additional components which cannot be defined in terms of curvature but are defined
in terms of recoil.

If By, consists of diagonal components only, rotation in any coordinate plane gives
recoil in the same plane. If further the diagonal components are all equal, we have
symmetrieal recoil, w'/w being independent of the plane of rotation. For symmetrical

recoil By, is proportional to ZH, F,; so that

3 The generalised definition is: a term E,F,t, is a density term if E,, F, are real, a pressure term
if they are imaginary, and & momentum term if they are antithetic.
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Symmetrical recoil corresponds to a de Sitter universe. This is a hyperboloidal space-
time, circular in its space dimensions and hyperbolicin its time-dimension. Its ordinary

R.C. tensor is v b8 o N ety :
B o= (887—48, 07| R, (88-3)

which reduces to 1/R? for a diagonal component and 0 for a non-diagonal component.
The component corresponding to displacement in time is positive like the other
components. This appears to conflict with the condition at the end of §87, that the
object-particle and physical reference frame move forward in time together. But the
circumstances in a de Sitter world are unique. It is well known that the de Sitter
universe containg no matter; so that when a particle is selected as test body the recoiling
environment is—what is left when you take away a particle that is not there.
Calling this an antiparticle> its displacements in space and time are such that
it always coincides with and cancels the test particle. Thus we obtain the de Sitter
R.C. tensor by first imposing the condition @’ = w for all displacements, and then
reversing the sign to change the particle into an antiparticle. This agrees with the
result stated.

It has here been assumed that the £- and #-frames have cogredient anchorage. It
would be confusing to use contragredient anchorage in discussing the direction of recoil.
But contragredient linkage of the frames is mathematically simpler. The only difference:
is that the covariant tensor B,, becomes a mixed tensor 5,9; so that the de Sitter R.C.

tensor in contragredient E- and F-frames is

By = al. (88-4)
The dual of this is the strain tensor
Z = B = al = alys B, (88-5)
by (83-1).
We shall find (§90) that the extended R.C. tensor and the extended energy tensor
are one and the same; so that (88-4) is also known as the energy tensor of the de Sitter
universe. The dual Z°is the energy tensor of a distribution of particles completely at

rest as in the standard. uranoid or planoid. Strictly (88-5) represents the planoid, not
the uranoid; because in the Einstein uranoid there exist components

— —2
‘823233 ‘B3131= B1212 - RO

of the R.C. tensor, which form part of the extended energy tensor, but do not appear
in (885). | -

Thus the dual transformation transforms the energy tensor (space tensor) of the
de Sitter world into the energy tensor (strain tensor) of the planoid. Equivalently it
transforms the energy tensor of the aether into the energy tensor of the planoid; for
the de Sitter world contains no matter or radiation. This is a somewhat more precise
formulation of the ideas introduced in § 86.

The transformation is important as connecting the clagsical (or molar relativity)
outlook and the quantum outlook. For classical particles are insertions in the aether

whereas quantum particles are superpositions on the planoid. This relation will be
further developed in §91. '

& It is not a ‘hole’; a hole is made by taking away something that (originally) is there.
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89. The tensor identities

It can be shown that for any wave vector y,
=5

3 B ) (B )~ (Frgy9), (Bog ) = O. (89-1)

This is proved by straightforward multiplication using the matrix representation in
§71. Let P = XH,p, = ¢x*; then multiplying (89-1) by x, and using p, = - iX"E, Y,

we obtain
(Ecrpﬂs'Eycrw_'PmEm@&)ﬂ =0.

This is the wave identity (w,—ip,6) ¥r = 0, found by another method in (72-81).
We shall investigate a corresponding identity for double-wave vectors. For any two
wave vectors ¥, ¢, we can show similarly that

E:{(Eya gk)o: (E‘udgé)ﬁ' + (Em¢)m (Eﬂo‘w‘)ﬁ}_ {(Elsw)cx (E16¢)ﬂ+ (E16¢)a (Elﬁ 7-[’);9} = 0.

(89-2)
We have
(B ¥r)s (B0P)g+ (B o) (Bl = (B o)y () g (s + @, ¥s)-
I ¥os = Yudp+bo iy (89-2) gives
A2 B ) ey (Buo) s — (Er6)ay (H16) g8} s = O. (89-31)
Since any symmetrical double vector can be expressed as the sum of double vectors

of the form ¥,¢,+¢, ¥4 (89-31) is an identity satisfied by any symmetrical double
vector . T

Let X be another symmetriéal double vector, and let 7' = ¥X*. Then

. . %&‘Xaﬂ = g;’a(?ﬁ' (89‘32)
Multiplying (89-31) by X,
{Ea(Em)m-y (E,ua')ﬂc? - (Elﬁ)ac-y (Elﬁ)ﬂé‘} Tyccz?ﬁ = 0. (89'33)
Also changing B to £ in (89-31), and then multiplying by X, A E)ses
| {ZO'(E;HT)CJG‘Y (Evo')ﬁﬁ} Tya&ﬁ =0 ('L{; +* V)‘ (89'34)
The last step depends on the multiplication rule (E) e (Buides = (B,,) g8 When o+

The term for which o = v is (E,)ay (— 1)5, which cancels the final term — (Day (¢, 55
because of the symmetry of T for interchange of @, ¥ with £, §. Equations (89-33) and

(89:34) are combined in

. {EO'(EM)G:)’ (Em),ea - 3;4”(‘8‘16)0;? (Elﬁ)ﬁ'(?} Tymr?ﬁ = 0. (89.35)
Hence, by (82-92), Zotiopr— 08,1616 = 0. (89-4)

Since ¥, , X s = T, 55 = %o pys» T is made up of terms for which B, and F, are both
symmetrical (imaginary). We have classified such terms ag ‘pressure terms’. Thus
(89-4} is subject to the condition that the cross-dual consists of pressure terms only.

We considér next the case in which 7'% consists of density terms only; so that 7 is
the product of antisymmetrical double-wave vectors ¥, X. The antisymmetrical
identity corresponding to (89-2) is found to be>

o=5
P B V)a (B o) p— By P (B ) g} + 3{(Byo V), (Bro)s — (Brsh) (Eig Vgt
= 4(¢*Emn W) - (Emn)aﬁ:' (89'5)

& SBome steps in the calculation are given in Protons and Electrons, § 115,
EFT 1z
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where E,,, is the product of the two real symbols in the # pentad. Setting

zxﬂ = It&cxgﬁﬁ’ - ¢m wﬁa

{Ea'(Em)a;y (Eva‘)ﬁa' + S(Elﬁ)a'y (EIG);?B} }Hy& = 2(Emn)87 %S(Emn)aﬂ' (8961)
If X is another antisymmetrical double-wave vector, and 7' = ¥X*, we obtain on
multiplying by Xopo

this gives

{ )wy va’)ﬁ& + 3(E16)ay 156 ,6'8} yadp = 2(Emn)&“y (Emn)ﬂoc Tx'yao:ﬁ' (8962)
Hence by (82-92) Zotio ur t 316,16 = — 285 nn, mn- (89:7)

For ¢t = 0,1, 2, 3,4, 5 the corresponding values of mn are 23, 31, 12, 05, 04, 45.
The corresponding formula for X ¢, ,, (#+v) is complicated, and does not seem to
be of much interest.

90. The contracted Riemann-Christoffel tensor

The summation X, ¢ 7, v in (89-4) resembles the operation of contracting a tensor
T,»°. We shall apply it to-the Riemann-Christoffel tensor (88-1),
T = Bl]{] - EE;&E'FHGB - (901)
The Einstein tensor ¢, and invariant ¢ are defined by
G}&v — _B#lvl + B;z2v2 + Bﬂ3v3 4 Bﬁ4v4, (90 21)
G =6 +62 +48 +GA (90-22)

The sums are limited to four terms so as to agree with the recognised definitions; but
(90-21) defines additional components of @7 with suffixes 5 and 0. The momentum
terms of B, 2~ differ from the ordinary notation by a factor 4. These yield the terms
G4 Gt G4, Gy, G2, G2, which will differ similarly. The reader will easily verify that
this difference of notation does not affect the results which follow.

If T% consists of pressure components only, (89-4) is applicable and gives

Z,B, 8B = 0. (90-28)
Hence, by (90-21), G = Byg"®~ By 55— B, 9% (90-24)

We have {ransposed the suffixes in the last two terms, using their antisymmetrical
property Summing (90-24) for g = 1,2, 3, 4,

G = 4B, — G5 G0
= 2B, 164+ 28,5,

by (90-24). Hence B, = HG—21) (A= By%). (90-3)
By (90-23) and (90-21),
.B#5P5 + B‘uuvﬁ I Gﬂv +8,¢ep'81616

= ~-{Gr-16(G-22)}
= 8uxkT}, (90-4) .

by the usual formula® in molar relativity theory for the energy tensor 7
(4, v = 1,2,3,4). Thus the ordinary energy tensor consists of two parts which we shall

distinguish
SUngUsh as (BT moon = B,®  (87KT ) mog = B (90-5)

s Mathematical Theory of Relativity, equation (64-71).
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The first part is composed of the components of B whose symbolic directions agree
with those of a mechanical energy tensor or outer product of two mechanical momentum
4-vectors p ., P.5- The second part is similar except that the magnetic momentum
4-vectors p g, P, take the place of mechanical momenta. Thus the components of the
extended R.C. tensor B in directions appropriate for an energy tensor form the actual
energy tensor. In other words

The extended energy tensor and the extended Riemann-Christoffel tensor are the same
temsor. (90-6)

The distinctive property of the energy tensor defined by
— 8.77KT#” =G} — 39, (G—~2A)

is that it satisfies the conservation of energy and momentum identically. It is proved
in general relativity theory that no other metrical tensor of the second rank, not con-
taining derivatives of the g,, beyond the second, has this property; so that its physical
identification with the energy tensor is clearly indicated. We shall distinguish it as the
conserved, energy tensor. Our developments have had little to do with conservation,
which controls changes of oceupation rather than the structure of states. So long as
we deal with steady states energy and momentum are, of course, conserved—and
conservation of pressure is thrown in gratuitously. Conservation is, however, intro-
duced when we bring in the R.C. tensor as a measure of recoil; and (90-4) shows it in
the familiar form.

It is noteworthy that magnetic momenta contribute to the conserved energy tensor
in just the same way as mechanical momenta. They were called magnetic momenta
{rather than magnetic moments) because they are components of the extended momen- °
tum vector; but we had not hitherto found any dynamical resemblance. The present
result shows that they are momenta in fact as well as in name. Since the reality con-
ditions for mechanical and magnetic momenta are antithetic, the magnetic momenta,
contribute to the energy tensor a negative density and pressure.

In (90-3) the component B, is identified with the cosmical constant A. All other
components are treated as variable characteristics of the system; so that at first sight
it is incongruous that By,% should be identified with a universal constant. But, since
Eyrepresents the scale dimension, B;% is the pure scale component. We have seen that
a ‘perfect’ system carries a scale-indicator whose changes, if any, are reflections of the
extraneous standard, so that it is invariant for any changes of the system itself; and
the symbolic frame has been anchored, so that the duty of scale-indicator is associated
with the suffix-pair 05. It is therefore entirely fitting that B, should be a constant
unalterable by any physical change of the distribution specified by B, and alterable
only by change of the exiraneous unit of density. The identification of this constant
with A agrees with molar theory, where A performs the corresponding duty of a scale or,
as it is more usually called in that theory a ‘gauge’. In particular, the ‘gauging
equation’ in empty space is &, = Ag,,. The density A/87« will be called the cosmical
standard. '

The observational standard, by which lengths and times are defined in molar as well
as microscopic physices, is a quantum-specified standard depending on the properties

‘12-2
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of the intracule. This is a mass standard, and the corresponding scale momentum is
(in classical designation) the component p,; of the momentum vector (§77). Densities
in molar physics are normally regarded as scale-free. But in cosmical theory they are
not strictly scale-free; and the breakdown occurs because the cosmical constant A is
no longer negligible. Scale-iree physics lies between cosmical and quantal physics;
and we can import into it either a density standard from cosmical physics or a mass
standard from quantal physics, the corresponding scale indicators being B,,% and pe.

We take the opportunity to make clear the relation between the quantum-specified
standard and the cosmical standard. We begin with the principle that for local measure-
ments the only possible standard is quantum-specified (§ 4); so that molar theory must
borrow its scale from quantum theory, and cannot be self-contained, The quantum-
specified standard is a o-standard. Later we introduce a multiple of the o-standard,
namely, B, = 20 \/V, which is shown to be the radius of curvature of the uranoid. By
geodetic measurements on the earth’s surface we can determine the radius of the earth,
or equivalently we can express lengths in terms of the earth’s radius as unit; similarly
by triangulations in the uranoid we might ideally determine lengths in terms of its
radius &, as standard. As the required measurements are molar, this would relieve
molar theory from the necessity of borrowing its standard from quantum physics. But
this breaks down because the uranoid is a postulated, not an actual, environment. A
more plausible way ig to use the aether instead of the uranoid, introducing the cosmical
standard by the equation G, = Ag,, satistied in space empty of matter. There is no
space empty enough for this purpose within our galaxy; but regions where G, = Ag,,
is satisfied to a rough approximation must exist between the galaxies. Itisnot sufficient
that such regions should exist; we must be able to identify them. We ought at least to
make sure that there is not more than one atom per cubic metre. Evidently the test of
emptiness to this degree will have to be supplied by microscopic theory; so that we
have not rendered molar theory self-contained, but have only changed its mode of
dependence on microscopic theory.2

Attempts have been made to generalise the gauging equation so as to provide a
cosmical standard independent (at any rate to the first order) of the density of the
matter present, and having everywhere a constant ratio to the practical quantum-
specified standard. Thus Weyl® introduced the condition G — 6(x%), + 6x, &% = 44 as
an appropriate generalisation of the condition G = 4A which holds in empty space.
Here x, is the electromagnetic potential vector, which, unlike the electromagnetic
force, is not determined uniquely by molar measurement. The resulting standard is
therefore not an observational standard. The same applies to many subsequent pro-
posals for a unified geometry of gravitational and electromagnetic fields.

We conclude that, as an observable standard, the cosmical standard is not a rival
to the quantum-specified standard. It cannot be infroduced without stabilisation;
certain conditions—uranoid distribution, empty space, values of an unobservable
potential, etc.—have to be postulated without reference to observation. But its intro-
duction as a supposititious molar standard is a convenient device for sealing off molar

* The extreme delicacy of the test is not strictly relevant. We need a test of emptiness, other than that
which molar theory itself can supply, in order to get out of a vicious circle—defining our metric by
G,y = Agyy in empty space, and defining empty space (molarly) as a region where the energy tensor {mea-

sured according to that metric) vanishes, the condition that the energy tensor vanishes being G, = Ag .-
b Mathematical Theory of Relativity, equation (89-2).
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physics from the rest of physics. In our formal extension By, of the molar Riemann-
Christoffel tensor, we keep within the sealed-off domain: and the scale naturally refers
to the cosmical standard.

91. States and interstates

We have found in (90-6) that the energy tensor and R.C. tensor are included in
the same extended tensor; so that the same extended tensor has been treated under
two names and with two notations 7}, B, (Allowing for the difference of units,
By = 8uxT}.) In future we shall use the name energy tensor and the notation 7j,.
By (85-6) its cross-dual is the phase tensor Zy®. The result (90-4), which is now written as

TP+T®=Tr (u,v=1,2,3,4), (91-1)
connecting it with the conserved energy tensor T, is subject to the condition that Z,°
contains pressure components only. The momentum components of Zy® are the 120
dormant components not represented in phase space; these correspond to anti-
symmetrical terms in 73,. Thus the inhibition of momentum components is the ordinary
condition of symmetry, regarded as part of the definition of an energy tensor except
in theories which have recourse to non-Riemannian geometry. The exclusion of density
components is more surprising. But it is evident from (89-7) that, when Z contains
density components, the conserved energy tensor is not contained wholly in 7,; it
includes also terms taken from T'%, i.e. from Z,° itself.» The density part of Z consists
of 36 components Z 2 with g, v = 23,31,12,04, 05, 45. The exclusion makes no obvious
difference to the form of 7j,; but it relates the components in such a way that the
number of degrees of freedom is reduced from 136 to 100.

Systems for which Z consists of pressure terms only provide a field of overlap of
relativity mechanics and symbolic mechanics, When density terms are present, the
theories bifurcate. Relativity mechanics continues to define the energy tensor by the
criterion of conservation, and symbolic mechanics by the criterion of appropriateness
of direction; and, since the criteria are no longer equivalent, their formulae cease to
be comparable. Ultimately the recalcitrant part of Z—the density part—will be the
centre of interest; because the phenomena associated with this part are outside the
scope of relativity mechanics. But we must first explore the field of overlap.

A steady distribution of probability is called a state. In limiting cases this may be a
rest state, but usually it is a state of steady circulatory flow of probability. The state
itself is an element of the framework of our analysis; the physical element is an occupied
or partially occupied state, obtained by attaching an occupation factor J- The factor j
is also interpreted as a probability; so that we have to consider probability distributions
over a set of states, as well as the probability distributions which form the states.
Physical change is represented by a change of oceupation factors, the analytical frame-
work of states being fixed. The simplest element of physical change is a transition or
partial transition between two states, i.e. the transfer of a quantity of occupation &
from one to the other. When the transfer oceurs continuously we getaflow of probability
which may in special cases be a steady circulation. A steady transition circulation
involves no physical change, and may form part of the description of a steady system.

* Explicit expressions for the diagonal components of G,* —43,7(G— 2A) for this case are given in Protons
and Electrons, formulas (11-58).
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A steady circulation of probability between two states will be called an interstate.
Like the state, the interstate is part of our analytical framework; the physical element
is an occupied or partially occupied interstate obtained by attaching an oeccupation
factor. The ocoupant of an interstate will be called an oscellator. In general a steady
system will consist of a number of particles occupying states and oscillators oceupying
interstates; and both particles and oscillators will make confributions to the energy
tensor of the system.

The interstate flow of probability must be represented in dimensions outside those
of the two states; but since the double frame provides 136 symbolic directions, we may
reasonably expect it to provide for this representation. We define a ‘simple pure
oscillator’ to be the carrier of a factorisable momentum vector P = yy*. (Temporarily
the terms vector and tensor, when referring to oscillators, will be courtesy titles having
no reference to transformation properties.) We assume provisionally that a simple
pure ogcillator is physically possible. By definition, the interstate is associated with
two states. These must be the pure states specified by the wave vectors ¢ and y; for
the factors of P are unique, and there is no other pair of states with which it is possible
to connect P. By (72-71) the momentum strain vectors of the pure states are U = yry,
V= xx".

If y is changed continuously to ¢, P is changed to U; so that the circulation in U
may be regarded formally as an interstate circulation between conjugate states specified
by ¥ and ¥, and correspondingly by strain vectors U, U*. State circulation is a special
case of interstate circulation, the states being conjugate. The outer product UU" is
an energy tensor characteristic of the state circulation; and, since it is a strain tensor,
we may adopt it as the phase tensor Z. The interstate circulation gives correspondingly
a characteristic energy tensor 7' = PP*. This stands for T,,,, = ¥, x;¥ ", X"s; and its
cross-dual is %,z 5 = ¥, ¥"px, x5, or T¥ = UV.

The notation is more symmetrical if we take P = ¥y, the strain vectors of the states
being U = yrift, V = yx" as before. Then the state circulations are described by energy
tensors Z = UU', Z = VV?*, and the interstate circulation is described tn a corre-
sponding way by an energy tensor 7' whose cross-dual is Z = UV, It follows that 7'
is a space tensor, and P is a space vector. :

The transition flow corresponds to the ordinary classical conceptlon of momentum,
which is first introduced as a measure of physical changes we observe. We have here
considered the special case of a steady transition flow which gives no phiysical change;
but the unsteady flow of probability from state to state, which represents physical
change, will follow the same route and be represented by momenta with the same\
symbolic directions. It is therefore the interstate flow that is directly represenﬂa\c‘liby'J
a space vector P or space tensor 7’ in the ZF-frame anchored in molar physies.

In the energy tensor the transition flow represented by P is coupled with a recoil
flow represented by PT. The reason for this will be understood by reference to reality
conditions. The vector yrx* does not in general satisfy the reality conditions (63-3) for
a momentum vector in neutral space-time; these limit a factorisable vector to the
form ¢yt B, found in (72-72). This means that P cannot be simply superposed on a
neutral environment, but will induce a disturbance representable by another vector
Q" superposed on the undisturbed environment. Since the flow represented by P cannot
exist independently of the induced or recoil flow represented by QF, it is sufficient that
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the energy tensor PQ' of the combination shall satisfy the reality conditions. The
reality conditions for a tensor must be consistent with those for its cross-dual. Since
U=y, V = xx' satisfy the reality conditions for strain vectors, PP* satisfies the
reality condition for a space tensor; and it is easily seen that PQ' will not satisfy the
condition unless @' = P*. Thus P'is identified as the momentum vector of the induced
effect in the neutral uranoid.

The double frame accordingly pictures the state flow and transition flow as follows.
The transition flow is represented by a classical momentum vector P in the E-frame, and
there is a recoil flow represented by P in the F-frame. The state flows are correspond-
mgly represented by momentum vectors U and V in the ¢'-and D’'-frames, regpectively
(§83). This is one of the cases in which the recognition of two parallel views of world
structure corresponding respectively to the BF- and C"D'-frames is important. For if
the interstate momentum vectors are transformed to the ¢'I-frame they become
general energy tensors; and, although the effects of transition can be duly calculated,
we lose the means of picturing it as a cireulation similar to that occurring in the states.
Naturally in quantum theory where the primary emphasis is on states, not on transition
circulation, we mentally interchange the EF- and ¢"D'-frames, so that we think of
the frame in which the state circulation is represented as the primary or EF-frame;
this, however, is not the frame that has been anchored in molar physics. The picture
having served its purpose, we express the relation between states and interstates by
means of the cross-dual instead of introducing a ¢’ D’-frame explicitly.

We have seen that the quantum momentum vector is classically a strain vector (§77);
so that the quantum energy tensor is classically a strain tensor. It is therefore to be
identified with Z,°. We thus reach a more fundamental view of the quantum classical
analogy:

The quantum energy tensor is the cross-dual of the classical enerqy tensor. (91-2)

The mathematical basis of the quantum-classical analogy is the analogy of the [ F'- and
¢"D'-frames. We shall now commonly distinguish 7}, and Z,° as the classical energy
tensor and the quantum energy tensor.

The set of states used in analysis, generally chosen as eigenstates of particular
characteristics, may be varied according to the problern that is being considered. In
quantum theory the aim is to choose a set of states between which transitions are rare;
so that to the first approximation the interstates are unoccupied, and the state energy
tensor is the whole energy tensor of the system. This has the form Z = ZjUU*. In the
second approximation, an interstate energy Z = ZjUV*, due to small occupation
factors j of the interstates, is taken into account as a perturbation energy; that is to say,
it is regarded as a mutual energy of the object-system and a perturbing system which
induces transitional circulation between the states of the object-system.

The interstates are not wholly unoccupied even in an isolated two-particle system—
a hydrogen atom-—unless it is in the ground state. In this case the ‘perturbing system’
must be the aether. For uniformity, perturbations due to extraneous particle systems
should be represented as effects transmitted through the aether; so that the aether is
always the immediate perturbing agent. The interstate energy tensor is then exhibited
as a mutual energy tensor of the strains produced by the object-system in the aether
and the rest of the strain system of the aether. If there are no additional strains due
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to extraneous particles or radiation, the strain system of the aether corresponds to its
own energy tensor, namely the cosmical energy tensor Ag,,,.

When we adopt the quantum, instead of the classical point of view, the parts played
by T and Z become interchanged. In analogous designation Z is a space tensor 1",
and T is a strain tensor Z’. More precisely T = Z,, where Z, is the tensor representing
the strains in the aether; there is also a strain tensor Z,, = 1" E,; F,, representing strains
in the uranoid (§86). The identification of the classical tensor 7' with the aetherial
strain tensor accords with the eonclusion in the preceding paragraph. Since quantum
particles are defined as superpositions on the uranoid, Z, is the strain tensor for the
ordinary purposes of quantum theory.

92. The recalcitrant terms

The quantum energy tensor Z (also described as the phase tensor) consists of pressure
terms Z, and density terms Z;. The corresponding parts of the classical energy tensor
are T, = 7%, T = Zg~. The suffixes p, d refer to classification in Z; both 7, and T
include pressure, density and momentum components of 7'. The important physical
difference is that 7, is a combination of recognised tensors of molar physics—the
conserved energy tensor and the Riemann-Christoffel tensor—whereas 7, has no such
connection with familiar quantities. |

A more direct expression of the distinction between 7T}, and 7j; is given in §89; 7},
corresponds to symmetrical and 7}, to antisymmetrical double-wave vectors ¥, X.
Allowing for a possible generalisation of wave vectors into wave functions, we have
the rule:

T, corresponds to symmetyical wave functions, and Ty to antisymmetrical wave funciions.
(92-1)

The result (92-1) is an important junction with current quantum theory; since the
need for separating symmetrical and antisymmetrical wave functions is insisted on by
all authorities.

If Z,and Z,, are separated, the states of Z, are specified by strain vectors of the form

U, = By Sos+ By Sa1 + Eyp 810+ BogSog + Eys Sos + Fas Sy (92-2)

the state energy tensor being Z; = 2qU;U,". Only dormant components of the strain
veetor occur in U;. Similarly the strain vectors U, of the states of Z, consist of active
components only. We can have also interstate energy tensors

Zy=2qUV, Z,=2qU,V,T

representing transitions between the states of Z;, or between the states of Z,. But
there is no interstate energy tensor of the form U,V f, since this is composed of momen-
tum terms of Z, or equivalently of antisymmetrical terms of 7'. Thus

There are no lransitions between states corresponding to symmetrical wave functions,
and states corresponding to antisymmetrical wave functions. (92-3)

This also agrees with current theory. It results from the symmetry imposed on the
energy tensor by Riemannian geometry. It is not an absolute physical rule, but is an
expression of the fact that the agencies (third rank tensors) required to bring about the
transitions are too complicated to be represented in a double frame (§ 80). The transi-
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tions are ‘forbidden’, in the usual sense which does not execlude their occurrence in
sufficiently complex conditions.

We describe the antisymmetry contained in symbolic factors ¥, X as spin anti-
symmetry. There is another kind of antisymmetry of wave functions contained in the
arguments of the functions, which we describe as functional antisymmetry. The co-
ordinates £y, £, £, in relative space are antisymmetrical for interchange of the particles
m, m'; so that we must regard relative space as inherently antisymmetrical relative
to xz-space. When interchange is taken into consideration, this leads to the condition
J(—=8& — &3 —&3) = —f(&1, £a. &3) Tor the wave functions of the intracule. In this case
the separation of the symmetrical and antisymmetrical wave functions is so complete
that they are represented in different spaces and carried by different particles; transi-
tions between them are unthinkable.

We are content here o point out this junction with an important branch of current
theory, leaving it to future investigation to decide how much of the current develop-
ment of the theory of symmetry and antisymmetry can suitably be annexed to funda-
mental theory.® Here we shall use only the two most elementary separations of
symmetrical and antisymmetrical states, namely the separation of intracules from
extracules and the separation of Z,; from Z,. In both cases the separation provides a
line of demarcation between mechanical and electrical phenomena, but the line is
drawn in different ways.

Any kind of division of unified physies is necessarily conventional; and the line of
division between the electrical world and the mechanical world is liable to shift
“according to our point of view. For example, it is a matter of terminology whether
non-Coulombian energy is to be counted as electrical or mechanical, or whether a, field
of electromagnetic potential whose curl vanishes can properly be considered an electrical
characteristic. In the most elementary theory mechanical effocts are determined bya
symmetrical tensor g,, and electrical effects are determined by an antisymmetrical
tensor ¥,,; and the guiding principle of our terminology is to describe effects associated
with antisymmetry as electrical and effects associated with symmetry as mechanical.

Unless there is antisymmetry there is no advantage in employing quantum methods.
When there are no intracules, the distribution is a scale-free aggregation of extracules,
affording no problems other than those which are within the scope of general relativity
theory. When there are no recalcitrant terms Z,, we can use the classieal energy tensor
7,, which has an immediate interpretation in terms of the tensors of general relativity
theory. Thus the approach to quantum theory consists in adding a microscopie system
consisting purely of intracules or of Z; tensors to a mechanical system of ideally simple
structure. We use a planoid consisting of extracules at rest, or equivalently specified
by the energy strain tensor a &, Fiq (§ 88) which is of the form Z,. So far as the addition
of intracules is concerned, this is the approach used in our earher chapters. But we
have now an alternative kind of addition to the planocid, represented by a recalcitrant
energy tensor Zz; which will be found to lead to important developments, both
theorstical and practical.

* I think that the most important part that must be annexed or adapted, is the application to ‘n-legged
intracules’, i.e. inbracules whose positive ends coalesce in & nucleus. I have not dealt with this problem.
In other respects I think this book goes at least as far as the current development, though the results are

generally obtained in a different form. The distinction between Fermi-Dirac and Einstein-Bose particles
is treated in § 126,



Chapter IX
SIMPLE APPLICATIONS

93. The metastable states of hydrogen

The energies of the ground state and metastable states of hydrogen can be found by
a rather simple construction.

The symbolic frame provides two axes normal to space, namely a time axis z, and a
phase axis 2. We have found (§63) that, when the space-time containing «,, z,, z;, 2,
is neutral, the axis x, is space-like, being associated with the achiral symbol Ey #,,.
Accordingly the geometrical rotation between x, and =z, is hyperbolic. By applying
such a rotation we obtain new axes x;, x,, the space axes z;, z,, %, being unchanged
This rotation will be called a feme-tilt.

In the usual representation of a system by vectors in space-time, the component p,
is stabilised. To obtain an equivalent time-tilted system the stabilised component must
be changed to p;;. We must first remove all discriminatory treatment of the z, axis,
then apply the time-tilt rotation, and then re-introduce discriminatory treatment of
the new axis xg. By §57 this means that the time-tilt rotation is to be applied to the
vector-density %, and not directly to P. In % the time and phase directions have
symbols Hy,, E:; and the time-tilt rotation is

q p— 6§E45‘!:ﬁ- . (93'1)

It is not arelativity rotation; the real relativity rotation in that plane, which is circular,
is inhibited by the postulated neutrality of space-time. But the time-tilt gives a new
system formally similar to the original system. _

Consider an intracule with a momentum vector E, p,. + By py, consisting of an
energy P,; = € and a magnetic moment p,, = gfi. The designation is classical, and by
(78-7, A2) € and g are real. Before adding it to an extracule we give it a time-tilt, so
that its momentum vector is P = Ej;e4- By, g% in a time-tilted frame E,. The vector-

density is given by iB = —PE.. = E),c— Hsgh. (93-21)

Transformed to the untilted frame, this becomes
13 = By, 6 coshu+ By iesinh w— B gh cosh u + B, igfi sinh w, (93-22)

and the corresponding vector is

P = E,;ecoshu — E,gesinhu + Fy, g% cosh u — E,gghisinh u. (93-23)

By (78-3) this becomes, in quantur designation,
P = E,gic coshu 4 Ey;1e sinh w + Eygigh cosh w4+ E, ,1g% sinh w. (93-24)

Rewriting (93-24) in the notation

P = Eop+ By if + Eyaijh + By iok, (93-3)
we have the relations € = pt—f2, g%=42—0q? (93-41)
elg = ulj = flee. (93-42)
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e _(P—o?
Hence ¢ff = g/a, or T

(93-5)

According to familiar principles, the tilt may be expected to have discrete eigenvalues
determined by quantisation. The terms in (93-24) which admit of quantisation are the
two angular momentum components Hyyijh, By iak. In order to apply the elementary
principles of quantisation it is necessary to refer P to rigid coordinates.

Before adding a free intracule the extracules are placed in a rigid field; and it is in
the corresponding rigid coordinates that the whole wave mechanical theory of repre-
sentation by wave functions and quantisation of angular momentum is developed.
By (19-7) the Galilean time is & times the rigid time; so that if  and «, are the hyperbolic
angles of the time-tilt measured in Galilean and rigid eoordinates we have

tanh u, = ktanh «. (93-61)
The momentum vector in rigid coordinates corresponding to (93-24) will have the form
P, = E,zic, coshu,+ By ie, sinh u, + E’zgfa’goﬁ cosh uy -+ By, 29,7 sinh u,. (93-62)

The constants €y, g4, %, refer to the undistorted representation of the free intracule,
which must be used in investigating the theoretical principles of its structure; but the
distorted representation in (alilean coordinates, described by the constants ¢, g, «
conforms to the observational system and is the officially recognised intracule.
We assume that the quantisation conditions for (93-62) are that the E,, component
-of angular momentum is an integral number of quanta j% and the E,, component is
one quantum #. Thus

]

tanhu, =1/ (j=1,2,3,...), (93-63)

so that tanh » = 1/jk. The F,; component, being in a spatial plane,? is unaffected by the
reduction to Galilean coordinates; but the E,, component is divided by k. The rigid
field in which the intracule is free corresponds to hydrocules at rest, so that & = 137.
Thus, for the Galilean vector P, the foregoing quantisation conditions give

J = integer, « = ;1. : (93-7)

Equation (93-5) coupled with the conditions (93-7) is the well-known Sommerfeld
formula for the energies € of the metastable states of hydrogen (including the ground
state j = 1). As the atom approaches ionisation, j—oco and e— g; thus g is identified
with the rest mass of the free intracule. Since there is no doubt as to the correctness of
Sommerfeld’s formula, we conclude that the metastable intracule is actually a time-
tilted intracule of the simple kind here discussed.

By (93-63) the ground state corresponds to %, = cc. The ground state is a limiting
state in which the intracule is time-tilted as far as it will go. The ordinary view of the
ground state as the first of a series of similar quantised states, scarcely does justice
to its extreme character; one gets the impression that it is a usurper, the rightful
bottom state being the 0-quantum state which has failed to materialise. But the state

* In comparing this with § 19, we must note that T,%is a strain vector, and the covariant momentum
vector p, which transforms in the same way is the guantum momentum vector—not the classical vecstor
which is contravariant, The permutation of suffixes (78-1} has no effect on H,,. It is therefore right to use
the quantum designation here,
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%o = 0 is rock bottom independently of any consideration of quantisation; and the
fact that it is also the 1-quantum state is of secondary interest.
The Sommerfeld formula for the unstable eigenstates of hydrogen is

€ _n+ (4% —a?)t .
(12— e2) = o s (93-81)
where % is an integer, or elf = (n+g)fe. (93-82)

There appears to be no way of generalising the foregoing construction to cover these
states. It is not surprising that they elude elementary treatment, because we shall find
later that the unstable states, unlike the metastable states, have non-algebraic wave
functions—a complication which it is scarcely possible to embody in a geometrical
picture.

It will be seen that in this treatment we obtain a representation of the intracule as
an integrated whole, in contrast to the later wave-equation treatment which represents
it by a density distribution over £-space. In this integrated representation &-space is
not introduced. It will be seen that the momentum vector (93-3) satisfies the reality
conditions B 1 for a molar particle in (78-7), not the conditions B 2 given for an intracule,
The discussion of reality conditions in §78 was not intended to apply to integrated
representation; in particular, the principle of uniformity of observation, used in
deriving the conditions, ceases to be relevant when the intracule is not represented as
a distribution over relative space.

94, Neutrium and deuterium

In a high quantum state the time-tilt of the intracule tends to zero, and the momen-
tum vectoris By ¢ 4 Hy, jf in classical designation or B gig + E,; 7% in quantum designa-
tion. The determination of the eigenstates of hydrogen is a special problem depending
on the theory of the free intracule, so that the energy x has to be taken equal to the
mass-constant of the intracule; but this is a matter of adjustment of the zero-level of
energy reckoning, and the intracule as it first appears in the two-particle problem is a
bound intracule with energy 0in a high quantum state. Thus in general theory the only
essential part of the intracule is the quantum angular momentum (classical magnetic
moment) Eoyij#, the term E, 4u being an arbitrary addition made by varying to the
adopted zero of energy reckoning. We shall indicate its arbitrary character by a square
bracket; so that the quantum momentum vector is (E4p,4) + Bag Pog, OF more generally

P, = [Ey;pyol + Bogpog + Egy gy + By 1. (94-1)

By (92-2) the momentum vector of a state of the antisymmetrical (recalcitrant) part
Z 4 of the quantum energy tensor is®

Uy = [Eys P16l + By Dos -+ By 031+ ByoPio+ Eyy Pys + EggPso + Eouvoss  (94-2)

where a similar optional term has been inserted, so that the occupant may be treated
ag bound or free according to the choice of zero of energy reckoning. One half of U} is

* The classical strain vector given in (92-2} 1¢ equivalently the quantum space vector. The quantum
degignation further introduces the suffix permutation 4,5, 0 -5, 0, 4 but this does not alter the form
of U,.
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representable by a hydrogen intracule. Tt suggests itself that in general theory another

type of intracule will be required to represent the other half, having a momentum

vector
By = [Bip15] + By pas + BygPso + By 0o (94-3)

Following the nomenclature in § 81, we distinguish P, and F, as spin and co-spin intra-
cules.

In classical designation P, becomes [ By, 1,51+ By Pos + Hyg 016+ Eyy Pos, and the corre-
sponding vector-density is SR, = [BoyPo] + Brighys + Hos Pos+ Eyshgs. A time-tilt only
changes the values of g, 5 without altering the form of B,; and, in fact, no rotation
which leaves three-dimensional space invariant can alter the form. Thus when a co-spin
intracule is added to an initial distribution of extracules, there is nothing corresponding
to the series of eigenstates which were obtained by time-tilting the spin intracule.
A simple co-spin intracule analogous to the simple spin intracule in § 93 has only one
state. This state may be given different orientations in a co-space whose coordinate
planes have symbols By, B, E,,, just as any one of the metastable states of the spin
intracule may be given different orientations in ordinary space; but in neither case
does the orientation affect the energy, which here has the symbolic direction E,e and
is not preferentially related to any orientation either in space or co-space.

The {- and G-algebras are sometimes useful in this connection. By (60-5) we can write

Py = [agt] o, 8y +ay G+ aq 8, (94-41)
Ly = [bge]+ 6,0, +by,0,+b,6,. (94-42)

The momentum vectors of spin and co-spin intracules are respectively {-numbers and
f-numbers,

The combination of a co-spin intracule and an extracule should be a system of the
same elementary status as the hydrogen atom which is a combination of a spin intracule
and an extracule. This points to a physical identification with the neutron. We shall
adopt this identifieation, which will be confirmed in due course by caleulating the mass
and magnetic moment (§§ 95, 119).

Since the angular momentum §% (components pyy, Py, P1,) is by definition zero in a
co-spin intracule, the neutron may be regarded as supplying the migsing state j=00of
the hydrogen atom. ‘A hydrogen atom in the 0-quantum state’ is a convenient
deseription of the neutron. When we use it, we must keep in mind that the sequence of
quantised states terminates at j = 1 as a limit; so that j = 0 is a singular state, extra
to the sequence. In the equivalent representation by a proton and electron, the
distinetion is described as a difference of binding of the electron. We accordingly
recognise two kinds of binding. Nuclear (or neutron) binding corresponds to a co-spin
intracule and atomic binding to a spin intracule,

It is recognised that a neutron can transform into a hydrogen atom, and therefore
into & proton and electron. To deny that a neutron is composed of a proton and electron
is as pedantic as to deny that water is composed of oxygen and hydrogen. In either case
the dissociation involves emission of energy and other components of the complete
energy tensor. We may, however, distinguish between an emission whose energy tensor
consists wholly of Z,, terms and an emission which includes Z,; terms. When guantum
theory is approached in the way described at the end of § 92, so that its application is
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directed to Z; systems superposed on a Z,, environment, the former emission merges
at once into the Z, of the environment, whereas the Z; emission has recaleitrant pro-
perties which can only disappear by forbidden transitions between antisymmetrical
and symmetrical states. 1t is clear that the change of momentum vector in the con-
version of a co-spin into a spin intracule corresponds to a Z; energy tensor. There is
therefore a justification for taking note of the corresponding emission, which has been
called a neutrino. _

Two systems which differ only in the Z,, part of the energy tensor will be said to be
modularly equivalent. The idea is that the conversion of one into the other would involve
changes of energy, momentum, angular momentum, ete., which we are accustomed to
accept without comment as the ordinary accompaniment of transitions, the balance
being provided by or taken up by the Z, environment. Correspondingly, for systems
described by momentum vectors, modular equivalence means that they différ only in
the symmetrical part U,; for in the energy tensor cross-terms of the form U,V; are
dormant. We have allowed for a very limited form of modular equivalence by the
addition of a bracketed energy term in the formulae in this section. The general
modular equivalent would be obtained by substituting [U,], where U, is an arbitrary
symmetrical matrix.

By transferring the centre of interest from the mechanical to the electrical world,
we invert our previous ideas of activity and dormancy. What was formerly looked upon
as the dormant part of P is now the most active part, and the former active part has
become dormant. Thus an alteration of U, (which has now become the dormant part)
is treated as having no classificatory significance; its effects are not in the half of the -
world that we are investigating. In §63 we pointed out that for the experimental
wmeasurement of P, (which has become U in quantum designation) it is necessary to
- have an extraneous electrical standard represented by 7, the mechanical standard
being taken as 1. The electrical standard now becomes the primary standard; and
indeed a separate mechanical standard is unnecessary, mechanical and electrical
quantities being distinguished as having even and odd dimension index in terms of
the electrical standard. When the electrical standard is substituted for the mechanical
standard the vector P is changed to —¢P. It would be confusing to have different
notation, nomenclature, standards, ete., for the mechanical and electrical worlds, since
ultimately we have to consider them in conjunction. So we must be content to make
clear the change in our point of view, without attempting to embody it formally in the
mathematics.

The E-frame is the outer product of a {-frame and f-frame; and similarly ‘the
F-frame is the outer product of a {'-frame and a & -frame. The {- and ¢'-frames are
anchored similarly with respect to the geometrical axes x,, x,, #;. The §- and &'-frames
are also anchored either similarly or contragrediently (according as the E- and F-frames
are cogredient. or contragredient) in molar physics. The combination of two particles
represented by momentum vectors is multiplicative, and the combined system is
characterised by the outer product of the momentum vectors. Thus the combination of
two spin intracules is represented by a product of ¢- and ¢’-numbers, which is an
EF-number; and a combination of two co-gpin intracules is represented by a 66’-nurober
which is an EF-number. But we have a choice of two representations of a combination
of a.spin and a co-spin intracule; it is represented either by a {¢’-number which is an
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EF-number, or by a {f-number which is a pure Z-number. By choosing the latter
representation we enter on a radically new development, ‘ _

Consider the two free intracules (94-41), (94-42), and let their momentum vectors be
normalised so that ay, b, = 1. For the outer product P, x P,, which in this case coincides
with the ordinary product by multiplication of E-symbols, we have

Py x By = (P + Py)+[Q), (94-5)

where ¢ consists of symmetrical matrices only. Thus multiplicative combination is
modularly equivalent to additive combination. The intrusion of the factor i is avoided
by writing (94-5) in the form (P, /2) x (Pyfi) = (P, + P,)/i — [Q); that is to say, the momen-
tum veotor P/ expressed in electrical units should be used in this connection, as foreseen
above. Not only is a combination of a spin and co-spin intracule represented by an
E-number, but the B-number represents them additively.

The combination of a spin intracule and a co-spin intracule will be called a double
intracule (abbreviated as p.1.). The momentum vector of a bound D.1. has the general
form Uz = BogPas+ Ly D31 + Eya P13+ By Dy + By Pso -+ By Doas (94-86)
so that the occupants of the antisymmetrical states which contribute the recaleitrant
part Z, of the energy tensor are p.1.’s. The D.1. has therefore fundamental importance
in our analysis. If symmetrical terms @ are added to make it resolvable (multipli-
catively) into two free intracules, the resulting D.1. may be described as ‘free’. But such
terms are, from the present point of view, dormant; and they have no classificatory
significance in defining the states of the n.1.

The double intracule must be added to a double extracule; but since extracules are
scale-free, the change from a single to a double extracule is merely a matter of doubling
the occupation factor. The resulting system is equivalently composed of two protons
and two electrons, one electron having atomic binding and the other nuclear (or
neutron) binding. We recognise this system as a deuterium atom.-

A deuterium atom is a combination of a double intracule and a double extracule. (94-7)

If the two protons and two electrons are arranged as a hydrogen molecule, only spin
intracules are introduced ; but there are four of them, since there are four sets of relative
coordinates £, joining & proton and electron. The same difficulty would arise if both
electrons had nuclear binding. The complexity of these systems agrees with our
analytical result that the two intracules must be of opposite kinds in order to form a
simple linear combination. This result is the starting point of nuclear theory.

95, Mass of the neutron

We shall determine the mass of the neutron by the scale-free method developed in
Chapter 11. In this method the density of a wniform distribution of neutrons at almost
exact rest is compared with the density of a corresponding distribution of hydrogen
atoms. The calculation depends on a knowledge of the multiplicity factors of the
particles. We are concerned particularly with the multiplicity of the hydrogen (spin)
infracule and the neutron (co-spin) intracule.

The intracule was introduced as a carrier of transition energy and its standard mass
# was determined accordingly. Unlike the other masses introduced, which were rest

4
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masses, # is a mass-constant; as such it is independent of the multiplicity of the intra-
cule. This is shown explicitly in (22:7), where the formulae for the masses of the proton,
electron and extracule involve their multiplicity factor 10, but there is no term intro-
ducing the multiplicity of the intracule. When the intracule is freed it is given an initial
energy equal to g, and it is then that p becomes associated with a definite multiplicity.

In the two-particle transformation it is postulated that the intracule has the same
multiplicity 10 as the other particles. For the two sides of the equation correspond to
two ways of resolving a double-wave function into two simple wave functions, and the
intracule is therefore represented as of the same formal type as the other particles. The
argument is made more precige by considering phase spaces. The probability density
of the bi-particle in 6-space is specified in § 26 by a double-wave function ¥ which is
invariant for the two-particle transformation. Since the distributions are pseudo-
discrete, an individual ¥ corresponds to the states comprised in a small element of the
combined phase space of the proton and electron, and after the transformation to a
small element of the combined phase space of the extracule and intracule. Ttis therefore
postulated that the two double phase spaces are divisible into elements which can be
put into one-to-one correspondence. This means that they must have the same number
of dimensions. Since each of the other particles contributes 10 dimensions, the intracule
contributes 10 dimensions.

Accordingly, congidering hydrogen atoms in Galilean coordinates, the free intracule
is a particle of rest mass x and multiplicity 10; and # then forms part of the initial
energy of the distribution. The intracule is represented as a particle distributed over
£-space; and its antisymmetrical character is contained in its coordinates £, which are
reversed in sign by interchange of the proton and electron. We have distinguished this
as functional antisymmetry (§92). Another representation of the hydrogen intracule
has been found with spin antisymmetry instead of functional antisymmetry. This is
necessarily an integrated representation (integrated over &-space), since the two kinds
of antisymmetry would neutralise one another if the coordinates were not eliminated.
The momentum vector of a state then has the form (94-1), and has 4 components (in
a time-tilted frame); and if the intracule were constrained to be in this state its multi-
plicity would be 4. The actual multiplicity 10 is due to the fact that the hydrogen
intracule has freedom of distribution over the whole series of metastable states, and
in addition over unstable states not yet treated.

We are going to apply a formula which is only valid for scale-free distributions, and
must therefore confine our attention to states of very high quantum number for which
the fixed-scale effects of quantisation are evanescent. The time-tilt is then negligible,
and the energy is the initial energy x. Considering one such state, we shall calculate
the energy of a particle constrained to occupy this state. The energy is increased by the
constraint which inhibits transition to other states, or, since the high quantum states
merge into a continuum, inhibits 6 of the 10 degrees of freedom. The constraint is a
stabilisation applied to the momentum vector, reducing the multiplicity from 10 to 4;
and, since g is initial energy, we can apply the usual formula (16-5). The energy x, of
the constrained intracule is g = 224, (95-1)

If such a constrained intracule exists naturally, it will be recognised as a particle
which remains in one state of its own accord. The co-spin intracule is such a particle,



Simple Applications 1938

since it has only one state. Moreover, it is scale-free since the momentum vector is not ,
confrolled by quantisation. The difference of the momentum vectors of the co-spin
and spin intracules can be regarded as the momentum of a constraint incorporated in
_the constitution of the former which nullifies 6 degrees of freedom. By the scale-free
theory the energy of a stabilising constraint is determined solely by its effect on the
multiplicity; and (95-1) applies equally to a ¥, intracule created artificially by con-
straining a ¥, intracule to one metastable spin-state, or a natural ¥, co-spin intracule
self-constrained to one state because it has no other. The only limitation is that the
energy of the system must not (in the states considered) be dependent on quantisation,
since (16:5) is expressly derived from the seale-free condition. For a co-spin intracule
the removal of the constraint, so as to allow transition to spin-states, is the process
commonly called absorption of a neutrino.

We can accordingly identify the mass x, of the co-spin intracule with #y; and the
difference of the masses n’, H' of a neutron and hydrogen atom is®

W—H =g, —u= 15 (95-2)

For complete accuracy it is necessary to consider f-factors. In (29-5) the reduction
of the ratio m/u from system B to system 4 introduced a factor §—3 resulting from the
different transformation law of the optically controlled mass 4 and the molarly con-
trolled mass . Thig factor is now irrelevant since the mass of the neutron is defined
in the same way as that of the hydrogen atom by molar control; and the energy (95-2)
transforms in the same way as ». We therefore employ here (and throughout this
chapter) the standard mass /= 108/1362. (953)
In atomic weight units the mass  of a hydrogen atom is 1-008130; this gives

# = 0-000564505a.w.u. (standard mass). (95-4)

Having removed the irrelevant factor we have still to consider whether (95-2) requires
further correction. It will be found in § 98 that the additional energy has to be multi-
plied by f; so that the final value is

w —H' = 1:58u = 0-0008236. | (95-5)

The present observational value 0-00082 1 0-00003 is too inaccurate to give more than
a rough check.

96. Double intracules

A factorisable double-wave vector ¥, , = 1, x; specifies a combined state of two pure
particles whose states are specified separately by i, x. The double-wave vectors
Vo = §WaXst XaVp)s P = H¥uXp—$X.¥) are not factorisable; they specify two
sets of states, but the occupants of these states are not resolvable into two independent
particles. We commonly regard unit occupation of ¥ as equivalent to unit occupation

® This result was first obtained in Proc. Roy. Soc. A, 174, 42, 1940. But I owe to H. 0. W. Richardson
the suggestion that w./u was likely to be the factor 12 (which had already oceurred in my theory in
connection with magnetic moments, Protons and Hlectrons, § 12-8). Richardson himself had partially
developed this suggestion in a paper accepted for publication by the Royal Society, which he after-
wards withdrew,

EFT 13
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“of each of the states ¥s, We, Tt is true that wave vectors are not in general additive;
and if we form from them energy tensors which are additive,

(P + o) (P _I;qja) + Yo . Pegpe,

But the difference ¥ 4 Yads is composed entirely of momentum terms of Z, and
these are dormant in standard conditions. Thus, unless there are present perturbing
conditions of the complicated kind necessary to induce forbidden transitions between
symmetrical and antisymmetrical states, the combination of two particles in the states
¥, ¥ is equivalent to the combination of two particles in the states ¥s, ¥e.

The particles occupying ¥¢ and ¥4 are not independent; for it is only when the
occupation factors are equal that the combination represents a distribution of simple
particles. If in a pseudo-discrete assemblage the occupation factor of ¥ is j, the
occupation factors 4,, j, of ¥, x may be any numbers such that j, j, = j; but the occupa-
tion factors of ¥*, @ are necessarily 4/j. Calling, provisionally, the occupants of ¥s, P2
extracules and intracules, occupation of an intracule implies equal ocoupation of a
corresponding extracule. The rule that there must be one extracule for each intracule,
obvious in the elementary case of hydrogen extracules and intracules, is thus extended
to extracules and intracules separated by spin antisymmetry. The new extracules and
intracules occupy double-wave vectors and are therefore bi-particles —doubleextracules
and double intracules. By §§ 89, 92, the Z, part of the energy tensor comes from the
¥s double vectors, and the Z; part from ¥%; so that Z,, is the energy tensor of the double
extracules, and Z; of the double infracules.

We have now two fundamental modes of analysis of an extended energy tensor:

(@) The element of energy tensor corresponds to a standard particle, consisting of
a simple extracule and intracule, or equivalently a proton and electron. _

(b) The element is divided into Z,, and Z,, corresponding respectively to a double
extracule and double infracule, or equivalently two protons and two electrons.

In (b) the separation of Z,, and Z; is stabilised. The absence of Z; components in the
energy tensor of a double extracule is a matter of definition, not observation; for if
such components were observed we should detach them from the extracule and a
double intracule would be introduced to carry them. Thus the double extracule is a
V.40 bi-particle, and the double extracule is a V4 bi-particle. Kxcept when modified by
dormancy, the multiplicity of a bi-particle is the square of the multiplicity of a corre-
sponding simple particle. Thus in (b) the simple extracule and intracule are Vy, and V,
particles; they correspond respectively to the 10 mechanical and 6 electrical components
of the momentum vector. The simple extracules in (¢} and (b) are identical; but the
intracules introduced in (@) to represent the electrical part of the world are entirely
unlike the ¥, intracules in (). They correspond one-to-one, since in either analysis
there is one intracule per extracule.

The primary, but not the only, difference is the multiplicity factor. We have seen
(§95) that the (@) intracules of mass u are ¥, particles; if by stabilisation these are
transformed to ¥; intracules, the mass becomes

He = 54 _ (96-1)

so that the density of the electrical part of the world is increased in the ratio § relatively
to that of the mechanical part of the world which is unchanged. But since it is the
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intracules that supply our quantum-specified standards, it would be more logical to
say that the density of the mechanical part of the world is decreased in the ratio 2
relatively to that of the electrical part of the world which remains constant.

When we passed from sub-threshold to super-threshold theory we multiplied the
density (then wholly mechanical) by the selection factor % before introducing any
electrical characteristics (§42). The transformation to ¥} intracules just removes this
selection factor. In§ 16 we showed that the multiplicity factors in gravitational theory
are in fact top-particle selection factors; and if the relative multiplicity factor L2 is
exhibited in this way, it is seen to be not merely equal to but identical with the selection
factor in sub-threshold analysis. The relation between analyses (¢) and (b) is now
apparent; (a) is super-threshold theory, (b) is sub-threshold theory. Equivalently,
(@) is gravitational theory, (b) is exclusion theory.

We see at once a number of details that fit in with this conclusion. The exclusion
treatment introduces a unit cell occupied by two protons and two electrons; this
corresponds to an element of energy tensor (6). When exclusion supersedes gravitation,
so that there is no gravitational interaction between the energy tensors of the particles,
energy tensors become physically additive; that is to say, the mathematical additivity
and separability of energy tensors (which is imposed by our method of analysis)
corresponds to physical juxtaposition and separation. This is presupposed when we
divide Z into Z, + Zg, and interpret Z,, Z; as energies of a mechanical and an electrical
system without reserving any part of Z to represent energy of interaction between
them. The whole theory of Z, based on its cross-dual relation to 7', identifies it with
the aether-strain tensor, not the uranoid-strain tensor, so that it applies to a world
built up from nothing as in sub-threshold theory, and not added to a uranoid. More-
over, in recognising a ‘recalcitrant’ part Z,; of the energy tensor, we definitely broke
away from gravitational theory in which the definitions are such that the law of
conservation is satisfied identically; so that inevitably Z, takes us back to the pre-
gravitational sub-threshold theory. Finally, the close association of exclusion with
the separation of symmetrical and antisymmetrical wave functions is familiar in
current theory.® -

In passing from analysis (a) to sub-threshold theory, the change of the multiplicity
of the simple intracule to 6, and of the double intracule to 36, is automatic. It is the
double intracule that is physically important. Mathematically it is divided into twin
¥; intracules; buf vhese are not to be taken apart. For if one of them is put by itself in
the standard environment, it§ momentum vector U; becomes dormant. We already
know that the physical division, when it occurs, is unsymmetrical, the constituents
being a spin and a co-spin intracule, This rejection of the ¥; intracule as a separable
particle is not inconsistent with the use that we made of the U; momentum vector
in §94. That was a vector connected with the p.x. by modular equivalence, and used
to exhibit its composition; it did not profess to represent its energy and momentum,

As usual we have left to the end the investigation of f-factors. Such a factor
arises, because in analysis (¢) we introduce an extra degree of freedom of the element
of energy tensor in order to provide for electrical properties. This is not required in

% But it is misstated, There is exclusion between symmetrical wave functions precisely like the exclusion
between antisymmetrical wave functions; but as shown in Chapter 1v it is currently replaced by inertial-
gravitational interaction.

I3-2



196 Fundamental Theory

analysis (b) where the electrical properties axe contained in the recalcitrant part of the
energy tensor. Thus the division of densities, and of the masses which transform as
densities, by £, which causes so much trouble in analysis (@), does not ocour in (b).
That leaves the mass unit for simple particles £ times greater in () than in (z); and for
double particles the factor becomes 2. In particular we have to multiply the mass of
the p.I. by §2in order to express it in the mass unit of analysis (¢) which has been con-
nected with observational measurement.

We have found that the mass of the standard particle calculated by super-threshold
theory in (40-7) and by sub-threshold theory in (43+7) is the same. This verifies that
there is no initial difference of mass-unit between the two analyses, such as would
compensate the foregoing f2-factor. The fact is that the difference of rest mass of the
standard particle and the hydrocule should have been taken into account in caleulating
the various fundamental constants from observational data. Since it has not been
taken into account we are saddled with a system of constants, ‘right’ by custom, but
wrong from the theoretical standpoint; so that each new development introduces
fresh f-factors, which have no theoretical right to be there, but are necessary to cover
up the initial mistake in the system of constants.

97. Comparison with field theory

The analyses (¢) and (b) may suitably be distinguished as ltnear and quadratic
analysis. In order to employ them in the routine of practical caleulation, we need a
simplified working conception of the way they are related. Linear and quadratic
analysis occur also in field theory; and it is helpful to examine the field treatment, since
their connection there is more easily grasped.

In field theory mechanical characteristics are specified by a symmetrical tensor @,
with 10 components and electrical characteristics by an antisymmetrical tensor F,,
with 6 components. This has fairly close correspondence with the representation in
particle theory of mechanical characteristics by the 10 symmetrical components and -
electrical characteristics by the 6 antisymmetrical components of the quantum’
momentum vector. The combination?

H,=G,+iF, (97-1)

corresponds in this way to the extended momentum vector. It occurs naturally and
fundamentally in affine field theory. Linear and quadratic analysis depend respectively

on two action-invariants K,=H=H,g =G, (97-21)

Ky = H,H» = (G, +iF,) (G»+iF#) = G,G% - F,, Fr, (97-22)

The first is the usual action ¢, employed in mechanical theory. The fact that F,, con-
tributes nothing to G expresses the dormancy of electrical components in linear
analysis. The second equation is more appropriately written

6,6» = H, H»+F, F». (97-23)

For the energy tensor derived from @ satisfies the Jaw of conservation identically; so
that, when electrical energy is introduced, it must be included in ¢,. Equation (97-23)

& The factor i is required if G, and F,, are real,
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corresponds to Z = Z, + Z; in particle theory. The absence of cross-terms between
H,, and F,, corresponds to the absence of momentum components of Z.

The usual electromagnetic action F,, Fr appears in (97-23) but it is coupled with
H,, H#* instead of with the usual mechanical action H = ¢. We have especially to
consider the relation of H,,H# to H. The element in quadratic analysis is a double
element which we think of as a combination of two simple elements represented by the
two factors of K,. One of these taken by itself should form the simple element of linear
analysis. ‘By itself’ means that aether is substituted for the second element. For the
aether G# = Agw, F™ = (, go that Ag® must be substituted for the second factor
H# in K,. The result is AH. Thus in order to use the two analyses concurrently without
an adjusting factor when we pass from one to the other, we must adopt units such that
the cosmical constant A = 1. Then, so far as mechanical characteristics are concerned,
the element of quadratic analysis is simply a duplication of the element of linear
analysis; but for the investigation of electrical characteristics the double element has
to be kept intact.

All these results have their counterpart in particle theory. The double extracule
“gplits up into two simple extracules; but the double intracule is mseparable. The
aether-strain tensor Z is used, so that the simple and double elements are added to
the aether, not the uranoid. But the next step is peculiar to field theory which is scale-
iree, and it would not be permissible to apply it to the corresponding particle analysis.
The electrical action F, F# of the double element is assigned half to each simple
element; so that we have a linear analysis with action invariant

G = H+3F, Fm. . (97-3)

These formulae are in units such that A = 1. Consider a change of unit such that

A = fi-1. This is & gauge transformation in general relativity theory. The fundamental
tenspr G, +¢Ff,, derived from affine field theory is by its nature invariant for uniform
- gauge transformations so that &,, F,, H, are unaltered. The transformation is
therefore ¢,,->f87'g,,; so that g»— By, The invariants (97-23) and (97-3) are then
transformed to fAH, H» + F, F), . ' (97-41)
BH +34F,, Fr), (97-42)

In field theory this is simply the removal of the restriction to special units, and £ is
an arbitrary constant. But in particle theory this transformation of the unit, with
f = 137/138, is introduced as explained at the end of the last section. It is useful to
exhibit the transformation in two stages as in (97-42). One factor /4 is engaged when
we replace the D.1. (corresponding to F,, F*) by two simple intracules {spin and
co-spin) additive to the two extracules which correspond to H. The other factor g
represents the change of unit of the whole linearised energy,

95. Mass of the deuterium atom

We define the ‘upper state’ of the deuterium atom to be that in which it is dis-
integrated into two protons and two electrons at rest, and the ‘lower state’ to be that
in which it is a deuteron and electron at rest. The difference of energy of the two states
is the mass-defect of deuterium.
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In the upper state a pseudo-discrete distribution of the deuterium atoms is indis-
tinguishable from a distribution of hydrogen atoms, and the same quantum energy
tensor Z applies to both. The classical energy tensor for the rest state is Ey; Fj;p; its
cross-dual Z contains both Z, and Z; components. If the distribution is regarded
as hydrogen, Z is left unseparated; it is then the phase tensor of one standard
particle, and the resolution into an extracule and intracule, or into a proton and
electron, proceeds by linear analysis. If the distribution is regarded as deuterium,
Z is separated into Z, and Z;, and the separation is stabilised; the two parts are
the phase tensors of a double intracule and double extracule in quadratic analysis.
The double extracule is equivalent to single extracule with oceupation factor 2 in
linear analysis.

We have to consider transitions from these limiting states. If in quadratic analysis
an arbitrary transition energy 67 is added this has to be divided into symmetrical and
antisymmetrical parts 82, 6Z; added to Z,, Z, respectively. But this destroys all
connection with the separation of intracules and extracules in linear analysis where the
extracules are incapable of carrying transition energy. The representation of transition
energy in this way is doubtless admissible, but it leads nowhere. This is not surprising
because quadratic analysis is sub-threshold analysis, anditisinappropriate tointroduce
transitions at the sub-threshold stage. Weaccordingly begin the treatment of transitions
in another way.

We take the simple extracule of deuterium and provide for its transitions, precisely
as we did in the case of hydrogen, by adding an intracule whose antisymmetry is
functional. Everything is the same as in § 18, including the masses m,, #; the change
from the hydrogen to the deuterium extracule is a change of the occupation factor of
the standard particle, and does not affect the specification of its states. The functional
antisymmetry of the intracule adds an interchange degree of freedom, changing the
standard particle to a hydrocule, and liberating the energy required to free the intracule.
We have accordingly an assemblage of doubly occupied hydrocules each with a free
intracule of initial energy p. Both particles at this stage have multiplicity 136; and the
intracule can take up as transition energy a complete energy tensor of an unrestricted
kind. A suitable addition of transition energy must bring it to the upper state, where it
will have an equivalent representation as the double intracule of quadratic (sub-
threshold) analysis. _

Fortunately there is no need to inquire into the relation between the two repre-
sentations. The D.I. is a V4 particle, so that a stabilising constraint must be applied
reducing the number of degrees of freedom from 136 to 36. The transition energy
required to be added is the energy of this stabilising constraint. This energy then
becomes rest energy of the ».1. which incorporates the constraint in its structure. The
energy of the Vg, particle is u,, where u, is given by the usual formula

fafu = 136/36. (98-1)

It will be seen that the method is precisely similar to that by which we found the mass
of the neutron.

The energy #,— i is lost when the atom makes a transition from the upper state in
which the intracule is a D.I. to the state in which it is a simple intracule at rest. The
latter is evidently the lower state defined above, in which transition energy is carried
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by a simple intracule association with the relative coordinates of a deuteron and
electron. Leaving out S-factors for the moment, the mass-defect of deuterium is

2 —D = py— o = 1004/36 = 0-001514 atomic weight units. (98-2)

As pointed out at the end of § 96, the energy of the double intracule has to be multi-
plied by g% to reduce to the recognised system of constants. The precise mode of
ingertion of f-factorsin (98-2) is found at once by using (97-42) as a guide. The corrected
formula is accordingly

2H' — D' = B(fps—p) = 15656 4 = 0-0015404 a.w.u. (98-3)

The observational value (Mattauch) is 0-001539 + 0-000002.

A question arises whether we ought not to use in (98-3) the mass g; of the deuterium
intracule rather than the mass x4 of the hydrogen intracule. This would increase the
foregoing result to 0-0015408. It should be remembered, however, that g, is a mass-
constant; and, although spectroscopic investigations introduce a free intracule having
1tz 83 rest mass, there does not appear to be any reason for introducing a rest mass g,
in the present investigation. I therefore incline to the view that (98-3) is correct; but
I am unable to answer the question definitely.

The f-factor, which was inserted in anticipation in (95-5) in determining the mass-
excess of the neutron, has the same origin. Put in a form corresponding to (98-3)

the formula is W —H' = Blu, — p). (98-4)

Remembering that g, refers to a double intracule and z,, # to simple intracules, we
gee that the f-factors in (98-3) and (98-4) are introduced consistently.

99, Mass of the helium atom

An ideal system composed of two deuterium atoms rigidly coupled so that their
sping and co-spins are anti-parallel will be called a ‘balanced atom’. The rigid coupling
is a stabilising constraint which reduces the number of degrees of freedom. When it is
imposed ag an arbitrary constraint, the energy of the system is changed by the energy
of the constraint. We shall find that this change can be calculated without difficulty.
If there exists a natursal state of two deuterium atoms in which the forces of interaction
themselves lock the spins in this balanced arrangement with almost perfect rigidity,
the energy of the interaction will be the same ag the energy of the stabilising constraint.
The method therefore gives a short cut to the calculation of the interaction energy of
such a state. We have reason to think that the helium atom is a state of the eight-
particle system fulfilling this condition to a very high approximation, subject to a
correction for the obvious non-rigidity of the distribution of the two satellite electrons.

We shall calculate the mass of a helium atom by this short cut. The long way round
is to form quantum equations for the eight particles, including both Coulombian and
non-Coulombian interactions, and solve them to determine the steady states that can
exist; the energy of the lowest state is the quantity we are seeking. The short cut
assumes that the non-rigidity of the spin-coupling in this state is negligible. We shall,
however, be able to find a limit to the possible correction for non-rigidity, and show
that the theoretical balanced atom is a very close approximation to the natural helium
atoro.
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Consider an assemblage of balanced particles in a pseudo-discrete state. Super-
ficially,* it appears to be a deuterium distribution whose probability is equally divided
between two pseudo-discrete states with opposite spin and co-spin; but mechanically
it differs, because the constraint forbids variation of the occupation of one state
without an equal change of occupation of the other. The fact that they have only a
joint-occupation factor makes them parts of one state. The spin and co-spin parts
U, — U of the momentum vectors of two deuterium atoms form equal energy tensors
Z, = UU*, which are additive. But in the balanced particle I/ and — U are included
in one state and systematically eancel one another in the resultant momentum. The
constrained balance of spins and co-spins is expressed by omitting the Z; components
of the energy tensor, the corresponding degrees of freedom being inhibited.

In wave mechanics the distinction between two states with independent occupation
factors and two parts of a state with only a joint-ocoupation factor is represented
~ by incoherent and coherent phase of the corresponding wave functions. The waves
of the two deuferium atoms have incoherent phase and do not interfere; but,
when coupled into a balanced particle, the waves are made coherent and interference
oceurs,

We have accordingly an upper state of the assemblage in which the eight-particle
system is two deuterium atoms (in their upper state, i.e. disintegrated into profons and
electrons) or equivalently four standard particles; and a lower state inwhich coupling
of spins and co-spins has eliminated the electrical or intracule part Z; of the energy
tensor. The result is obtained by quadratic (sub-threshold) analysis. Changing over to
linear (super-threshold) analysis, the difference between the two states still consists
in the elimination of intracule energy; so that the four standard particles become
four hydrocules {or more formally a standard particle state with oecupation factor 4
is transformed into a hydrocule state of occupation factor 4). Accordingly the transition
- from the upper to the lower state causes a loss of -1+ of the upper energy. As the
upper state is that in which the atom is disintegrated into 4 protons and 4 electrons
its energy in the observational system is 4ar; and the mass-defect of a balanced atom is

4/137. (99-1)

In comparing this investigation with §§28, 29, it is to be noticed that here the
electrical energy is extinguished by balavcing; previously it was reserved for intensive
treatment, We cannot get rid of the electrical energy of a distribution of protons and
electrons merely by dropping the intracules, because equality of the number of extra-
cules and intracules is an essential feature of the representation. In Chapter 1 we
separated the electrical energy for specialised treatment but comypensated the removal
by a change of unit which multiplied the remaining energy by £; but here the electrical
energy is made zero by a balancing of the intracules, and there is no compensating
factor #. Thus the energy is £~ times that of the four hydrogen atoms. The intracules
containing the spin and co-spin momenta (corresponding to F,, in field theory) are
double; so that balancing is only possible when there are at least eight simple particles

a Eacﬁ proton and electron has even probability distribution over the whole extent of the assemblage;
and we shall not notice correlations of position unless the search for correlations of coordinates forms part
of our method of investigation. In the short cub, coordinates are not introducsd; and, surveying tho

distribution from this point of view, there is no particular reason to notice the aggregation of groups of
particles into compact nuclei.
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in the system. With helium there begins a new possibility, unprovided for in any less
complicated system.

The satellite electrons of helium provide a ‘two-legged intracule’ to carry transition
energy. This is a doublet with one positive charge 2e and the negative charge split into
two parts —e. This is intermediate between one and two intracules of the hydrogen
type, and its mass will be intermediate between x and 2x. It is fairly evident that the
mass is 4 4/2; and this is verified by reference to the corresponding theory of the inter-
change of extracules in §47. We there found that, when one particle is interchanging
simultaneously with a number of particles, the squares of the momenta of the separate
interchange circulations are additive; by calculating the resultant momentum according
to this quadratic law we obtained the same masses of the extracules that had been
found by other methods. Here the two legs of the intracule correspond to two inter-
change circulations, and the resultant momentum vector has therefore a scale A2 times
that of a simple intracule.

To obtain the helium atom we must not eliminate the electric energy wholly, as in
the balanced particle, but must leave enough to provide a free two-legged intracule.
The caleulated mass-defect of helium is accordingly

4
4H —He = 1;_ — fo4/2 = 0-02867 a.w.u. - (99.2)
In terms of K, the calculated mass-defect (99-2) is
4.1362
- (W —,\/2) 4 = 52589, (99-3)

This is nearly the same as the nuclear energy-constant 4. In (80-4) and (50-6), 4 is
the energy defined by optical control. To make it comparable with (99-3) we must
convert it into molarly controlled measure. The analysis being linear, this multiplies
the value of 4 by f'.# The result is

A = 524164, (99-4)

where 4 is the standard mass both in (99-3) and (99-4). The difference between (99-3)
and (99-4) is not due to the omission of a minor correction. Mathematically the close
agreement 1s just a coincidence; but the coincidence has important physical conse-
quences. It means that the electric energy of the eight particles (less the amount
retained in the two-legged intracule) is just about the amount of non-Coulombian
-energy released by welding two protons into one, i.e. by constraining them to have the
same coordinates; for — 4 is by definition the non-Coulombian energy of two protons
whose coordinate differences £, %, ¢ are 0.

Consider the following ideal change in the eight-particle system. We remove all the
internal Coulombian energy of the six particles forming the nucleus; that is to say, we
inhibit interchange circulation between them. But we retain the charges of two of
the protons for external purposes; so that these two protons interchange with the two
satellite electrons or, if the atom is ionised, with the charges that they induce in the
environment. They therefore retain their mutual non-Coulombian energy, which
remains as calculated in § 50. The other four particles, being deprived of their external

3 The irrelovant factor ,3% is omitted and the relevant factor f is inserted, ag in the case of the addi-
tional energy of the neutron (§ 95). :
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fields, have no non-Coulombian energy. Assuming in advance that the two active
protons will be found to be rigidly coincident, they constitute with the two satellites
a two-legged intracule. It will be seen that the result of our tampering with the system
—removal of all electric energy except that represented by a two-legged intracule—
amounts to the addition of the energy — d that has been calculated. In order that this
change may come about naturally and not by artificial constraint, this energy must be
supplied by internal adjustment in the nucleus.. We have left only one adjustable
source of energy, namely the non-Coulombian energy of the two active protons.
These must draw nearer together until they reach a distance r at which the energy
Ae ¥ is —d. :

Ifd < A, the elimination of the energy d leaves a non-rigid nucleus having an internal
coordinate r representable as the separation of two protons. If 4> 4, the minimum
non-Coulombian energy is not low enough to enable the atom fo reach the ideal state
without artificial constraint. The fortunate near coincidence of d and 4 allows us to
adopt either of them as & close approximation to the mass-defect of the actual helium
atom. Evidently d and A are respectively upper and lower limits to the mass-defect;

so that we have 4H — He = (52:502 + 0-086) 1
= 0-02862 + 000004 a.w.1L., (99-5)

the error indicated being the extreme error. The ohsgervational value is 0-02866.

100. The separation constant of isobaric doublets

A nucleus of mass number n and atomic number N, is commonly said to contain
N, protons and N, = n— N, neutrons. 1 shall accept this as a current notation, but
without endorsing the hypothesis that neutrons exist individually in the nucleus. In
my own formulation the atom consists of n protons and #» electrons, N, of the latter
having co-spin (nuclear) binding and N, having spin (atomic) binding. Neither the
spin nor the co-spin electrons are bound to individual protons; and the neutron has
no relevance except as affording a simple example of co-spin binding.

If for analytical purposes the particles are grouped in twos or fours, allowance must
be made for continuous interchange of membership of the groups. There is a great
advantage in using the deuterium group of four particles as a unit of structure, because
it constitutes a unit cell in exclusion theory. Then, instead of calculating directly the
energy due to particles of one group interchanging with particles of another group, we
can calculate the exclusion energy which was found in § 47 to be another representation
of the same interaction. |

Consider a complex atom composed of }# deuterfum atoms, so that N, = N, = n.
The extracules are passengers in the theory, and we can confine attention to the in
double intracules. To calculate their interaction by exclusion theory we proceed just
as in§41; but the application is simpler, because the known data to which the formulae
must be fitted are at the lowest level instead of at the top. By (43-1) the top quantum
number is £ — (Sn)t. (100-1)
Also, by (43-31), the energy at the kth quantum level varies as k2; so that for different
values of n, the top energy is

@ = 4¥ (A4 = constant). (100-2)
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It has been pointed out that, whereas (100-1) is only accurate for large values of =,
(100-2) is accurate for all integral values of ¥. |

The case £ = 1 corresponds to a single deuterium atom, and the energy p, of its .1,
has been found in §98. It was shown in §43 that at f = 1 the energy is half rest mass
and half exclusion energy; thus the constant 4 in (100-2) is 14, and

€ = Juot® = Jpy(3n)t. (100-3)

The second form is accurate only for large values of #. The important quantity for our
urpose is ‘

PHp Co = €—Fpy = Ji{(§n)t—1}. (100-4)

This is the exclusion energy of the D.1. as ordinarily reckoned, i.e. the excess above the
energy of the ground state ¥ = 1. To correspond with the analysis of extracules in § 43,
we have to picture the unit cell as occupied by two particles which in this case are the
two V3 intracules whose combination forms the p.1.: these mutually exclude one another
from the level & = 0, so that even in the lowest state the D.I. contains exclusion energy
/9. But, except in this comparison, the D.1. is treated as an indivisible particle; and
‘exclusion energy’ refers to the exclusion energy &, between n.1.’s.

We can usefully employ (100-4) in certain differential corparisons of atomic masses.
These depend on the fact that the top particle is more or less loose, and can be modified
without much affecting the rest of the system..If # is so large that lateral exclusion is
negligible, the top particle stands on a rigid platform formed by fully packed energy
levels beneath, just as in §42; and the conditions are the same as those of an isolated
particle superposed on & rigid environment. We shall assume these conditions; but,
since # is not very large in practical applications, there will be some inaccuracy due
to the neglect of lateral exclusion.

The modification of the top particle that will be considered is the substitution of two
spin bound electrons for one spin bound and one co-spin bound electron. We set

n=N,+N,, T,=4%4N,~N,), (100-5)
$0 that the composition of the atom is specified by two characteristics (n,7],). The
change considered—conversion of a nuclear into a satellite electron—is (7, 0)—= (n, — 1).
We have treated in §98 the transformation (2, 0) > (2, — 1) of a deuterium atom into
a hydrogen molecule. The present transformation is similar except that it must be
applied to a top particle; for if a lower particle were changed it would disturb the
exclusion energies of all particles above it. The change of &, is proportional to the
change of p, in the deuterium transformation; so that, if d is the mass-defect of

deuterium,

AG, = Coy. © (100-61)

2
If this is the only change of energy, the difference of mass of the two atoms is _
min, —1)—m(n,0) = 3d{(3n)t — 1}, (100-62)

where m(n, T,,) denotes the mass of the atom (n, T',). _
It is customary to express mass-differences in thousandths of an atomic weight unit
(mMu.). By (98-3), d = 1-540 aMu.; and (100-62) becomes

w(m, —1)~nm(n,0) = 1 .1:272nt— 0-770,  (100-63)
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An essential point in the theory is that the field giving the particle the energy €, is
a rigid exclusion field, unchanged by the insertion of the particle. As # becomes smaller
and lateral exclusion becomes relatively more important, this approximation becomes
insufficient; a correction for non-rigidity will then be required. When there is only one
particle, and therefore no exclusion field, the whole mass u, is ‘a correction for non-
rigidity’; in fact, as » decreases, the top particle changes gradually from a quantum
particle superposed on a rigid field to a relativity particle characterised entirely by the
disturbance it creates in the field. In the exclusion caleulation the ground-state mass
518 not a constant mass, possessed by the particle in addition to exclusion energy, and
carried up with the particle as it is pushed up to higher levels; it is a correction peculiar
to the ground level, to be replaced at higher levels by a similar, but much reduced,
correction for the lateral exclusion remaining at the higher level. It is for this reason
that we use €;, not € or &;+ x, in obtaining (100-62).

In practical calculations # is rather small, and it is worth while to introduce a
refinement that improves the approximation. This eliminates the systematic effect of
the residual lateral exclusion, though it cannot eliminate the raggedness associated with
small values of %. In the exclusion calculation we use a uniform distribution of momen-
tum over a sphere in momentum space; and the unit cells are successive spherical shells.
The energy € of the bounding sphere is taken as the energy of the top particle. This
obviously exaggerates the exclusion energy, since the particle occupies uniformly the
cell next the boundary. One way of correcting this is to give the top particle the mean
energy of the top level and of the level next below; then in (100-63) »* is changed to
#{nf+ (n—2)%}, or approximately (n—3)/n*. But the following treatment is perhaps
more rigorous. _

On adding the top particle the bounding sphere rises from the in — 1 to the in level.
Assuming rigidity of the lower particles this must be regarded as the effect of self-
exclusion of the top particle, i.e. exclusion between different parts of it (the particle in
the smoothed representation being infinitely divisible). Self-exclusion is lateral; and
it would be inconsistent to take it into account without also taking into aceount the
small lateral exclusion between the top particle and other particles. It is desirable to
Separate the two aspects of a particle, namely as excludors and excludees. As excludors
the particles have no separate individuality, and each contributes an equal share to
the general exclusion field; as excludees they occupy different cells and so acquire a
domiciliary individuality. Regarding the addition of a particle as the addition of an
excludor and an excludee, the excludee necessarily goes to the top cell, and the exeludor
intensifies the exclusion field in the ratio 4n — 1 to 3n. We wish to include in &; the self-
exclusion of the top particle.2 We have therefore to adopt the average exclusion field
during the gradual addition of the top particle. This is less than the bounding sphere
value in the ratio n — % to n. We have therefore to correct (100-63) by multiplying
nt by (n— 1)/n, so that it becomes

(n— 1}/mb. (100-64)

The exrror of approximation ought to be considerably reduced if the main calculation
is made for the middle of the range instead of for one end of it. If » is odd, the atoms
(n, ), (n, — %) have integral N, and N, ; and (n, — 3) is obtained from (n, §) by changing

» If it were not included as exclusion energy it would have to be added as rest energy additional to the
exclusion energy derived from other particles.
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anuclear into a satellite electron. The atom (n,0), for which &, is calculated then comes
into the middle of the range. It eontains a half D.1., and there is no physical atom
answering this description; but this does not affect the exclugion calculation, which
uses a smoothed representation that can be varied continuously. Making this change
as well as (100-64) in (100-63), we have

. 1
m(n, —3)—m(n, 1) = &. 1-2723”;@&_—0-770. (100-7)

There remain errors of raggedness. For n < 10 the smooth formula is very precarious,
and we cannot expect more than the roughest agreement; but onwards from » = 11,
where the third quantum level begins, (100-7) should be 5 fair approximation.

The pairs of atoms (n, 1), (n, —}) are called ssobaric doublets. The experimental data
for 18 isobaric doublets ranging from n = 3 to »n = 41 have been mvestigated by

E. P. Wigner, who gives the formula®

mn, —§)—mn, %) =3%. 1-27%;—1-*0-79. {160-8)

His separation constant 1-27 is purely empirical, being chosen 0 as to give the best
general representation of the data. Thus (100-7) is observationally confirmed.

101, I.éotopic spin

Considerable progress has been made in nuclear theory by extending to co-spin
angular momentum the analysis used for spin angular momentum in the theory of
atomic spectra. The leading principle is that both the resultant angular momentum
and the component in a certain control plane are quantised. The control plane is
determined by the environment of the particle or group of particles considered; it is
a plane of symmetry of that characteristic of the environment which interacts most
strongly with the spin of the object-system. For ordinary spin angular momentum the
control may be provided either by an extraneous magnetic field or by non-isotropic
characteristics of the atom to which the group of particles belongs.

For co-spin angular momentum the control plane must be a particular plane in the
3-space formed by the directions By, Ey,, E,,. Alternatively we denote these symbols
(in undetermined order) by 8, 6,, 8, In the standard environment each of these axes
has been given a distinctive physical interpretation; so that any of the three planes
might be a controlling plane. Let 6,, be the axis exercising the strongest control. This
means that there is strong opposition to the 6, 6, rotations of the object-system, which
would break its coupling with the §,, axis, and relatively little opposition to the 4,
rotation which is in the vw-plane. It is evident that the weakly opposed rotation is
the time-tilt introduced in §93; because the perturbation introduced by it is repre-
sented by the slightly imperfect stability (metastability) of time-tilted states. The
plane of time-tilt is ,; in five-dimensional representation; so that it corresponds to
the E,; coraponent of a vector-density . This becomes the o4 component of a classical
momentum vector P; and by (78-3) the quantum designation is the same:

Thecontrol plane for guantisation of co-spin momentumis the Eyy plane; and the quantised
component i3 the magnetic energy (time-component of magnetic Moment) Pog- (101-1)

& Reports on Progress in Physics {Physical Society), 8, 279, 1941. The constant 0-79 in (100-8) was
intended to be the mass of the neutron,
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This identification is confirmed by the following considerations. The gpin and
co-spin terms form the electrical part of a momentum vector; and their symbols
&y oy &oy Oy By, 0, introduce two 3-spaces useful for the representation of electrical
characteristics. Ordinary space, created and occupied by a planoid, is a 3-space of &
different type; and its axes (£, E,;, E;;) correspond to the symbols ¢6,,(;, £, {3) with
8,, = F,,. Thus the first effect of associating the electrical system with the standard
environment is to single out in f-space a particular axis 6, to play the part of K,
This is clearly the principal discrimination of directions in 0-space exercised by the
environment; and the further discrimination of two particular axes in the wv-plane
must be very subsidiary. Accordingly for a complex atom (considered as a whole) in
the standard environment the controlling plane for quantisation of eo-spin is the plane
E,, of the symbolic frame anchored in the standard environment. The controlling
force ig, in fact, the inertial field. '

If we are treating part of an atom, e.g. a top particle or a small group of top particles
analogous to the group of valency electrons in an atom, the environment includes the

- test of the atom. Itis possible that the core of the atom may exercise a control stronger
than that of the inertial field, and in these circumstances the quantised component
might have a direction differing from E,. I am unable to decide whether this actually
happens. The important point is that in no circumstances does the co-spin momentum
lack a strong controlling field.

Ordinary angular momentum consists of two parts, usually called spin and orbital
momentum, but distinguished in our theory as particle and field angular momentum.
There is nothing to correspond to field angular momentum in co-space; or, at any rate,
it has not been made use of in theory up to the present. We therefore consider onty the
particle or spin angular momentum in developing an analogous treatment of co-spin
angular momentum.? |

Denote the resultant spin momentum of the atom, measured in the unit %, by §;
and let its components be S, S, S,, the controlled component being 8,. The established
rule is that S is an integer or half integer, and that there are 28 -+ 1 states with §, = §,
§—1, ..., — 8. Tt is assumed similarly that the resultant co-spin momentum 7' is an
integer or half integer, and that there are 27"+ 1 states (constituting different isobaric
atoms) with the controlled component 7}, = 7', T'—1, ..., —T. The controlled com-
ponent is called the ésofopic spin and is identified with the 7}, defined in (100-5). Iso-
baric doublets correspond to 7' = 4, T}, = 4, — 1. We can also have isobaric multiplets
with 3, 4, 5, ... components, corresponding to ' =1, 3, 2, ...

We have to examine the connection between this treatment and the exclusion
treatment adopted in § 100. If 7" = in, the n+ 1 eigenvalues of 7}, give isobaric atoms
of mass number % and atomic numbers ranging from 0 to ». In the known elements
and isotopes 7, is much less than 4n; and, although this does not necessarily imply that
T is less than in, there is indirect evidence that in the lighter elements (say, up to
n = 50) 7' is quite small. The same happens with §; theoretically the resultant spin of
Z satellite electrons might be as much as 1Z; but in spectroscopic theory § is always
much smaller, being determined by the valency electrons. The reason is that the spins

& When not overpowered by other interactiong, the field angular momentum provides the control
plane for the spin angular momentum. Co-spin angular momentum has not this control to fall back on,
but it has the inertial-field control instead.
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of the intracules forming the core of the atom are approximately balanced, and can
be left out of consideration. The analogous treatment of 7 evidently assumes that the
nucleus similarly consists of a core with approximately balanced co-spins; and 7' is
the resultant co-spin of a small number of co-valency intracules, not included in the
core and more or less loose from it. These co-valency intracules correspond to the
occupants of the topmost levels in the exclusion freatment.

The isobaric doublets with 7' = 1 are monocovalent. Their co-valency intracule is
the top particle in § 100. The interpolation, which we use when # is odd, makes it in
this case half a D.I., which becomes a co-spin intracule in the state 71, = } and a spin
intracule in the state 7, = — 1. Ideally the top particle interacts with the core only to
the extent that the core gives it a constant exclusion energy. This ideal detachment is
also assumed in the spin theory, since quantisation of 7’ and 7', is only effective if the
external perturbations are not so strong as to cause very frequent transitions between
the quantised states. The exclusion treatment is easily extended to triplets, quadruplets,
etc., by detaching in the same way the top strata containing the necessary number
of D.1.’s or half D.I.’s to represent the required co-valency,

The two methods supplement one another usefully. The smoothed exclusion repre-
sentation in nuclear theory is analogous to the Fermi-Thomas treatment of the satellite
electrons in a complex atom. In the satellite electron system, however, the smoothed
representation fails to take account of the closed shells which make the valency a
periodic function of the number of electrons. Apparently the nuclens is more amorphous
and therefore better suited to the smoothed treatment. There is no sign of periodicity
of co-valency; and all odd nuclei up to 7 = 35 have monocovalent isobars.

102. Radii of nuclei

The methods used in this chapter are such that there has been no occasion to consider
the coordinates of the particles.» Officially we have been unaware that the nucleus is
an unusually close agglomeration of particles. It can, however, be inferred from the
very large intracule energies that have been found that, whether they are Coulombian
or non-Coulombian energies, some particles must be in close proximity. Without
further inquiry we shall accept the observational conclusion that the protons and
co-spin electrons form a compact nucleus of small radius. Presumably the boundary
1s ill-defined; and, if an exact ‘radius’ is attributed to the nucleus, it must be defined
conventionally. We follow the convention in Wigner’s theory by which the actual
nucleus is compared with a simple model. Tn the model each particle has uniform
probability distribution over a sphere of radius #; and r is adjusted to give the best
agreement with the observed energies.

The electrostatic energy of the net charge N, e uniformly distributed over the sphere
of radius r is £ e*/r. This requires correction on account of the aggregation of the
charge into finite units e, since it includes a spurious energy corresponding to the
non-existent attraction between elements of the same unit e. Wigner assumes that
there are IV, charges e, and the corrected energy is accordingly N, (N, — 1) e?/r. This is
unsatisfactory since it depends on the unfounded hypothesis that neutrons exist
individually in the nucleus. But we can substitute a more general freatment, which

# Except in the second part of the caleulation of the atomic mass of helium.
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does not raise this question. If we derive the Coulomb energy from the formula (100-7)
which bas been corrected for the finite divisibility of the particle distribution, or from
Wigner’s empirical formula (100-8) which must include the correction, we must use
an expression for the Coulomb energy which has been correspondingly corrected. But
our original formula (100-63) refers to a smoothed distribution in which the particles
are infinitely divisible, and this will transform directly into the correspondingly smooth
Coulomb energy which treats the carriers of charge as infinitely divisible. We therefore
use the smoothed continuous distribution throughout the calculation, which gives
the exclusion energy (100-63) and the electrostatic energy £N 2e2/r,

Exclusion energy can equivalently be represented by interchange energy, which
in turn has been identified with Coulomb energy; so that broadly speaking our exclusion
treatment is a method of calculating the Coulomb energy of the atom. The different
points of view adopted in the three kinds of treatment lead to somewhat different
definitions and distinctions; and it would be more accurate to say that the treatments
overlap, but are not identical in their scope. In (100-63) we readily identify the term
involving » with the electrostatic energy as ordinarily defined. The constant term
(which would ordinarily be classed as non-Coulombian energy) is an intrinsic difference
of energy between spin binding and co-spin binding. Wigner, assuming that the
electron is bound to a particular proton, takes the constant term to be the mass excess
of the neutron. We take it to be equally bound to all the protons in the nucleus. Owing
to the smoothed treatment, our value 0-77 of the constant term is strictly the limiting
value when the number of protons is very large. When the electron is co-spin bound %o
one proton as in the neutron the constant term is 0-82. Tt is noteworthy that it makes
so little difference to the énergy whether the binding is to one proton or many protons.

Since N, = 4n T, the difference of the electrostatic energy N 2e2/r in the trans-
formation of 1), from § to — 4 is §ne?/r. (In conformity with the ‘looseness’ of the top
particle (co-valency particle) it is assumed that the general distribution of the particles
which determines 7 is unaltered by small changes of 7),.) This difference corresponds
to the term }.1-272. 7% in (100-63). Hence

e?/r = 1-060n~* mMu.
which gives r = 1-460 x 1013 _n# cm. _ (102-1)
The particle density of protons in the nucleus is
op = nj5mrd = 7674 x 10% ¢m.~3 (102-2)

This is independent of »n; but, owing to the approximation employed, it is restricted
to atoms in which 7}, is small.

103. The nuclear planoid

The investigation of the satellite electron system of a complex atom is naturally
divided into peripheral problems (concerned with valency electrons) and core problems.
Nuclear theory may similarly be divided into peripheral theory and core theory. The
existing peripheral theory, as developed especially by Wigner, forms a natural
specialised continuation of our fundamental theory (§101); and, with only minor
changes and re-interpretations, we can annex it en bloc. Several attempts to investigate
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the core have achieved substantial progress, and there must be some measure of truth
in the corresponding formulations; but the progress has not gone far enough to make
contact with fundamental theory. The present gap is too wide to be bridged without
a great deal of specialised investigation which I am unable to undertake. The following
development does not close the gap, but is intended to narrow it.

The knowledge of the nature and magnitude of the Coulombian and non-Coulombian
forces between particles derived by fundamental theory is presumably adequate for
the solution of all nuclear problems; the difficulty is to find a method of applying it to
highly complex systems, which is not altogether intractable. Nuclear physicists have
proceeded on the assumption that the quantum method developed in extra-nuclear
physics is suitable also for the nucleus; and it is clear that the assumption is justified,
partially at any rate, by the results. We have found that the quantum method breaks
away from the classical or relativity method by introducing quantum particles as
- superpositions on a rigid environment; and it is a fair conclusion that those who apply

quantum methods to nuclear structure are dealing with particles of this kind. Probably
unconsciously, they have introduced a nuclear uranoid or planoid, and are pursuing
the super-threshold theory that results.

The uniform. distribution found in the last section, which has a density independent
of the mass-number n of the atom, offers itself as a nuclear planoid. The proton density
o, found in (102-2), is 1-044 x 10*! times the proton density in the standard uranoid.
This ratio has been obtained by purely theoretical calculation.® Besides having greater
density, the nuclear planoid differs from the uranoid in having one electron per two
protons instead of one electron per proton.

The non-Coulombian energy of a proton with another proton at a distance r is
—~Ae*® Thus, when it is in a distribution of protons with particle density oy, its
non-Coulombian energy is — #, where

E =3 [Adem" g,dV = n'k3do,, (103-1)
the factor 4 being inserted to avoid reckoning the total non-Coulombian energy of
‘the nucleus twice over. This, however, refers to the standard uranoid in which only
spin binding of the charges ocours. Here the charge —e induced by a proton in its
environment is half spin bound and half co-spin bound. From the extra-nuclear point
of view we are concerned only with the spin bound induction. By the calculation of
non-Coulombian energy in § 49, the constant A for a nuclear proton is half the constant
for a free proton, because its field is screened by the co-spin bound charge —%e which
it induces in the nucleus. The intra-nuclear point of view gives the same result, because
we are then only concerned with the induction in the nuclear planoid which is the
co-gpin bound charge — le.

Accordingly, halving (103-1), and inserting the values of 4, k, o, already found, the
non-Coulombian energy per proton is

E = ntkiAo, = 21-631 mMu. (103-2)
The Coulombian energy is J5ne?/r = 0-159n%; so that the total energy is
' — 21-631 + 0-159n% mMu. per proton. (103-3)

The particles will of course have large kinetic energy in this ‘ potential well’ since they
exclude one another from the bottom level of the well. If there are a reasonably large

® Omitting f#-factors, the ratio is 3n(2)® (5)% N3,
EFT T4
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number of protons, the usual result that the mean energy ¥ is 2 of the top energy &
will apply.

The foregoing is the sub-threshold analysis of the nuclear planocid. The particles
which figure in ordinary quantum analysis are super-threshold particles, carriers of
energy superposed on that of the rigid planoid. In order that these may be identified
with the protons and electrons of extra-nuclear theory, which are carriers of energy
superposed on that of the rigid uranoid, the top level of the nuclear planoid must
coincide with the top level of the standard uranoid. This adjustment is necessary
in order that there may be no discontinuity of energy reckoning when particles pass
from or to the nuclei in atomic transmutations. We have determined r so that the
Coulomb energy 0-159n! of the nucleus agrees with the ordinary reckoning Ze?/r,
outside the nucleus; it will therefore not affect the adjustment of top levels. Thus the
constant term —21-631 in (103-3) is the depth of the bottom level of the nuclear
planoid below the common top level of the nuclear planoid and uranoid; that is to say,

€ = 21-631 mMu. (103-4)
We may attempt to calculate the exclusion energy & directly from the density of
~ the particle distribution in the nucleus, as in the theory of white dwarf matter. The
cell formulation of the exclusion principle does not apply to protons unless the full
complement of electrons is present, and we have to revert to extracules and intracules.
The new energy is exclusion energy of the extracules, which are packed more closely
in the nuclear planoid than in the uranoid; the exclusion energy of the double intracules
has already been taken into account (§ 100). Adapting (45-1) the energy per extracule is

3 (3op\t A2
5 (EE) 5oz = 23116 mMu. (103-5)

In (45-1) this is the mean exclusion energy Z, because we there dealt with a super-
threshold application of the exclusion principle. Here we are dealing with a sub-
threshold application, and the constant A2 should be replaced by £22 in accordance
with (42-2). Or, what comes to the same thing, the result (103-5) is the top energy &.

This second caleulation of & is not rigorous; although the nuclear sphere of radius
r contains n protons, it is not at all clear that it contains » extracules. Half the extra-
cules are associated with spin intracules and the corresponding electrons are far outside
the sphere. It is therefore not surprising that (103-5) exaggerates the exclusion energy
a little. The second method is not really a suitable way of attacking the problem; but
the rather close agreement of the two results confirms our interpretation of € as the
depth (from top to bottom level) of the nuclear planoid.

Since the mean exclusion energy of a proton in the nuclear planoid is 2@, there is a
deficit 2@ per proton of energy in the nuclear planoid as compared with the ordinary
rest energies of the same particles in the standard uranoid. This means that (in so far
as the planoid is an adequate approximation) a nucleus of mass number » will have a
mass-defect

2En = 8-65n mMu., compared with hydrogen} (103-6)

= 0-52n mMu., compared with oxygen.»

I think that this is about the closest possible linear representation of the observed

mass-defects from, say, n = 30 to 1530. For # > 150 the mass-defect is smaller. It is
2 Corresponding to a ‘packing fraction’ 5-2.
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also smaller for # < 30; but this is accounted for by edge-effect, which reduces our value
(103-2) of the non-Coulombian energy calculated for a uniform proton distribution of
indefinite extent.

If we think of 2€ only as mass-defect, the close agreement with observed mass
remains an unexplained curiosity. The nucleus contains Coulombian energy large
compared with the errors of the formula (103-6); and this must be counterbalanced by
negative energy superposed on the planoid. The key to the practical validity of (103-6),
which is a slightly improved. form of the ‘whole number rule’ is that the energy 2€ is
a margin of safely. We shall always have particles with an energy 8-65 mMu. greater
than the mean energy. Presumably the most stable state is that in which a nucleus
can just retain its top particle, and cannot admit another. The mass-defect (103-6)
then follows automatically. To the usual approximation, which neglects lateral exclu-
sion, the planoid and the system superposed on the planoid are independent; and the
presence of the latter will not affect the foregoing condition.

Evidently it is a boundary condition for the superposed syster that its total energy
is approximately zero. As n increases from 40 to 238 the Coulomb energy (superposed
on the planoid) increases from 1-86 mMu. per proton to 6-10. No doubtitis the difficulty
of balancing this energy that causes the nucleus to draw in electrons in excess of the
planoidal quota. From » = 238, this excess of electrons reduces the Coulomb energy
from 6-10 $0 3-60; so that the direct effect is considerable. But we forbear to pursue
the technical ramifications of nuclear physics; and the theory of the nuclear planoid is
a suitable halting point.

Tt may be convenient to summarise the present contributions of fundamental theory
to nuclear theory. These are:

(1) Determination of the law and the constants A4, k of the non-Coulombian energy
of two protons. -

(2) Determination of the mass-defect of deuterium.

(3) Determination of the mass-defect of helium. This is possible by a favourable
combination of circumstances not applying to any other atom.

(4) Determination of the separation constant of isobaric doublets, and hence of the
radii of nuclei.

(6) Determination of the binding energy of a co-spin electron (@) in a neutron,
(6) in a nucleus. The former is the mass-excess of a neutron.

(6) Suggested use of a nuclear planoid, leading to a possible explanation of the
whole number rule.

(7) Unification of the isotopic spin theory with the rest of fundamental theory.

(8) Rejection of meson-field theory, and of the constitution of the nucleus out of
protons and neutrons. The latter hypothesis, however, if used merely as an aPProvima-
tion, is comparatively harmless, and may at times be a convenient simplification. No
empirical constants are used in the caloulations; and the results in all cases agree with
the experimental values.

104. Mass of the mesotron

The so-called reality eondition which forbids momentum components of the quan-
tum energy tensor Z is a boundary condition furnished by the standard environment.
It refers to a simple system, fully specified by Z and therefore containing not more

I4-2
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than one D.I., in isolation or in a non-interacting assemblage. A complex atom is formed
by uniting several simple systems with energy tensors Z" (r = 1,2,3,...). Any one of
the simple systems is then in an environment containing electrical particles, and the
standard reality condition does not apply to it. Alternatively, defining Z” to be the
energy tensor which the simple system would have if it were isolated, the whole energy
tengor Z of the complex atom contains in addition to 2Z" an interaction energy for
which the reality condition has not been determined. There is therefore nothing to
prevent atoms more complex than helium from containing a certain amount of for-
bidden energy Z,,. We exclude helium because its constitution has been determined
in §99, and it is clear that there is no appreciable amount of forbidden energy.

The carrier of an energy tensor Z, consisting of momentum components will be
called a forbidden oscillator. Normally a complex system is analysed into symmetrical
and antisymmetrical states chosen so that the part of Z), and Z; not included in the
state energy tensor is as small as possible. A small residue of Z, will be an interstate
tensor representing transition circulation between the antisymmetrical states, and a
small residue of Z,, will represent transition circulation between the symmetrical states;
Z,, will be wholly an interstate tensor representing transition circulation between
symmetrical and antisymmetrical states.

Physically we distinguish Z, and Z; as mechanical and electrical energy. Our
conelusion is that in the heavier nuclei the sharp distinetion between ‘mechanical’
and ‘electrical’ breaks down, and we can have energy in a mechanical-electrical inter-
state. Tt is natural that a distinetion, first introduced and defined in very simple
conditions, should under increasing complication become muzzy. The forbidden
components fall into two groups:

Ly = ZE’;E,GPM, Zpy = ZE?A'FEPW (104-1)

where s and ¢ indicate symmetrical and antisymmetrical matrices. We therefore
recognise two types of forbidden oscillator. It appears that one of them, say Z,,,
transfers occupation from a mechanical to an electrical state, and the other from an
elecirical to a mechanical state. The argument is that the terms B, F, and B, F, in Z
must be distinguished in some way because in the state energy tensor they count as
independent degrees of freedom. When they occur in an interstat energy tensor they
are interchanged by interchanging the two states. I do not think there is any other
way of distinguishing two kinds of transition flow2 Since Z,,,, Z,,, each contain 60
components the forbidden oscillator is a Veo-

To facilitate the calculation of masses, etc., we consider uniform assemblages of
particles in a steady state, just as the practical physicist arranges his material in a
way which simplifies his research. Like him, we afterwards apply our results in different
conditions, e.g. to isolated particles in unsteady conditions. This practice hag hitherto
worked smoothly because we have treated particles obeying the standard reality
conditions and therefore transferable into any neutral environment. The forbidden
Vo does not obey the standard reality conditions, so that when transferred to the
standard neutral environment, it can only exist transiently. Tf by metion or otherwise

5 Steady trensition circulation will imply equal oceupation of B, F, and B, F,; but this does not affect
their independence, since the steadiness is not compulsory. There is no need for the coefficients of ¥},

E,F, to be equal in a state energy tensor.
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the highly complex conditions in which the oscillator was born become replaced by a
standard environment, Z,, will presumably not be able to disappear instantaneously;
we. may therefore expect occasionally to observe forbidden oscillators as free but
short-lived particles.

The free Z,,, particle, which transfers occupation from a mechanical to an electrical
state, will spend itself in transforming mechanical energy of the uranoid into electrical
energy. The Z,,, will similarly spend itself in transforming electrical energy of the
uranoid into mechanical energy. The fact that the uranoid contains no electrical
energy is a trivial obstacle; after the Z,, particle has done its work there will be a
minus quantity of electrical energy. Thus the ultimate products of the two kinds of
forbidden oscillator are related in the same way as the electron and positron.

It is clear that the forbidden oscillator is electrically charged. Z,, and Z,, are
reversed in sign by reversing the chirality of the double frame; so that they react with
an extraneous electromagnetic field.

The process of decay can be studied more precisely. Consider a uniform assemblage
of Z,, particles. The energy tensor has to change from the Z,, state which does not
satisfy the reality conditions into the usual Z, + Z, state which does satisfy them.
Thus the V;, particles transform themselves by transition into V36 particles. If mis
the mass of a Z,,, particle, the mass of the resulting F,, is 60m1/136; and the difference

76111/136 (104-2)

is radiated in the transition. Radiation cannot carry away the charge; and the Vs
will be charged —as we should expect since it is formed by conversion of mechanical
into electrical energy. The V4, is therefore not a standard particle, but the charged
bi-particle treated in §22 which consists of an electron {or proton) and a comparison
particle. The comparison particle merges in the wuranoid so that, according to the
usual description the Z,, particle changes into an electron (or proton). The Z,,
particle similarly changes into a positron (or negatron}.

The reason for the genesis of a comparison partiele is easily understood. We have to
remember that Z refers to quadratic, i.e. sub-threshold, analysis. We have found that
_ two protons and two electrons in super-threshold analysis correspond to a unit cell in
sub-threshold analysis. This refers to the state energy tensor. The interstate energy
tensor consists of interaction or perturbation of this system of particles; and its con-
ceptual carriers, being supernumerary to the system of particles, have been distin-
guished as oscillators. We cannot introduce in super-threshold theory a new particle
without antecedents in sub-threshold theory. The object-particles in super-threshold
theory are obtained, as described in § 42, by exciting a comparison particle. Thus, it
an oscillator is to be turned into a particle it has to provide the energy m, necessary to
constitute an additional particle in the sub-threshold as well as the excitation energy
corresponding to the recognised mass m, or my, of the resulting object-partficle. Tn
short, Z,, is a sub-threshold energy tensor reckoned from the bottom level in exclusion
theory, which is m, below the zero level of energy reckoning in super-threshold theory.

We recognise observationally transient particles, called mesotrons, which decay
by transition into electrons or positrons. 1t can scarcely be doubted that these are the
forbidden oscillators here discussed. Accepting this identification we can calculate the

& We are dealing with a large assemblage so that the molar law of conservation of charge applies.
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mass of the mesotron. The mass of the charged ¥, bi-particle (comparison particle
+ electron) is my+m,. Hence 1 = 138(m,+m,), and the energy radiated in the tran-
sition 18 M= (g +m,) = o+ m). (104:3)
The mass 11, of the mesotron is by this much greater than the mass m, of the electron
into which it decays. Thus® g = Z8(mg+m,) +m, (104-4)

If we take account of f-factors the quadratic energy m is multiplied relatively to
the linear energy m; +m, by . The result becomes

mO = %‘%(mo+ me) + mga : (104'5)

where m, is as usual 10m/136. (The effect of f-factors on m, is trivial and has been
ignored.) The result is m, = 173-98 (104-6)
in terms of the current electron mass m,,.

There seems to be no reagon why there should not also exist heavy mesotrons which
decay into protons and negatrons. Their mass is obtained by substituting m,, for m,
in (104-5). The result is 2-38m,,.

The prinecipal, if not the only source, of mesotrons must be high-energy stimulation
of nuclei containing forbidden oscillators. Since they are produced by extra-terrestrial
cosmic rays falling on the earth’s atmosphere, we infer that nitrogen and oxygen (either
or both) contain forbidden oscillators. The occupation of these oscillators is, of course,
very small in the normal atom, and an oscillator filled with unit occupation must
break away from the atom. It may be rather important that hydrogen and helium
contain no forbidden oscillators, and are therefore transparent to cosmic rays; since
these elements have very high cosmical abundance, and constitute perhaps 99 per cent
of the mass of interstellar matter. :

& This formula was first given in Proe, Roy. Sec. A, 174, 46, 1940. The multiplicity factor 60 was then
assigned tentatively as an interpretation of current views as to the spin properties of the mesotron. The
theory here given is much more cogent.



Chapter X
THE WAVE EQUATION

105. Field momentum

Let a covariant wave vector ¢ be a function of the coordinates ;, z,, x5, ,; and let
X be the position vector By x, + Fys2y + By 25 + Eyy 4. A rotation g in the 4-space gives
Y’ =qy, X' = qXq 1. Setting

7# = f(xl, Lo, g, 274)’ ¢J = f,(xi! xé, xé, xfl), (105' 11)

we wish to determine the transformation f—f' of the functional operator f.
Consider an infinitesimal rotation ¢ = ¢*#1:4%:, By § 56,

Xy = By — o Ql15, Xy = Ta+2,d01,, X5 = x4, Xy = X, (105-12)
Hence Y = (@1 — a0y, Tyt 21 A015, 5, ) = €2 Wn f' (@), 25, 5, 2,),
where by = ,0/0xy — 22, 0[0;. (105-21)
Therefore @y, @9, @5, ,) = "2 W2 1)y’ = @~hie Wra 1120010 o)y
= &bt G f () 0, 204, 2,).
We set L,=-1,+3E, = —(x,0/00,—,0/0x,~}E,,). (105-22)

Then for a rotation df ,, in any of the six coordinate planes
f! = L@y f, (105-23)

Let q,(0) denote the operation of rotating an operand through an angle ¢ in the £,
plane, i.e. changing it to the equivalently constructed operand in a frame rotated
through this angle but retaining the original E-frame as reference frame. When & is
infinitesimal, we have

q,(0) ¢ = Bl o, qﬂ( )f = etul . f. (105-24)
For an operand yr %, =30, =-—p
’ 00 oy PH 21016 “
by (73:23), p,, being the operational form of the momentum component p,. Thus
. O
pﬂ = —QZplﬁaiHﬂ' (105'3)

We shall adopt (105-3) as the general definition of the momentum operator.
For a physical system specified by a wave function f, we have

P, = —2ipL \ (105-41)

122 |
since (105-24) gives 9q /06 = L, in this case. Since the wave function is defined over
a 4-space, only six components of the momentum vector are defined by (105-41),
namely, the components of the angular momentum 6-vector. To agree with the usual
notation we set 7. (105-42)

o~

P1g =
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Then, by (105-41) and (105-22),

P, = —ifi(x,0/0x,—x,0/0x,—3E,,), (105-5)

which is the well-known formula for angular momentum in current theory. It consists
of two parts, which we shall distinguish as

field angular momentum ~ (%, 0/0x, — x,0/0x,) ,} (105-6)

particle angular momentum — —#(—{H,,).

The rotation (105-12) is about the origin, and the field angular momentum is corre-
spondingly about the origin. Ifp,is a linear momentum at z, the corresponding angular
momentum about the origin is ,p, —,p,. Thus the field angular momentum is the
result of a field linear momentum

" p, = —ilidfou,. (1057)

In the early chapters (105-7) has sometimes been used in anticipation. But this is the
first time field momentum has appeared in the systematic development which began
in Chapter vi. Throughout the last four chapters we have treated wave vectors and
tensors which are either isolated or constant in space; so that the momentum has
always been of the kind which we now describe more particularly as particle momen-
tum. Thus, in the logical sequence of the theory, (105:7) is a new result now met with
for the first time. It provides the accepted definition of the constant #; and, since it
is a field momentum, % is essentially a field unit of action; and we see immediately the
reason for fic/e? being 137 rather than 136 (§20).2

There are conspicuous differences between the particle and field momentum veetors.
The latter is limited to a linear momentum 4-vector; for, although we employ also an
angular momentum 6-vector, thisis merely a different way of using the linear 4-vector,
not an additional characteristic. In the particle momentum vector all the components
represent independent characteristics. The commutation properties of the field and
particle vectors are, of course, quite different.

The definition (105-3) gives insight into the nature of momentum. Writing ()

for q,(0) ¥, the expression x* 58(—9 Yr(0) is a measure of the differential effect on y*r of

rotating one factor relatively to the other—a process which may be regarded as
creating a strain in the binding of ¢ and y. The momenta p, (expectation values) are
therefore coefficients of elasticity, defined in the usual way by considering small virtual
displacements. In order that the strain in the binding may be separated from intrinsic
strains in the factors themselves, the virtual displacement must be such as to produce
no intrinsic strain in ¢r; and accordingly it is limited to a relativity rotation. Extending
the same interpretation to the product of two wave functions f, ¢, the angular momenta
(105-5) are coefficients of rotational elasticity of the binding of f and g. As before the
virtual displacement must be such as to produce no intrinsic strain in f; and the
condition for this is that it is the relativity rotation f— f’ determined in (105-23).
Although quantum theory ostensibly adopts the non-relativistic outlook which
associates observable momenta with entities rather than with relations between entities,

|

2 This is contingent on the present distinction between particle and field characteristics being found to-
agree with the distinction in Chapter 11. This will be verified later.
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its practice is better than its profession; since even the simplest ‘entity’ is represented
by the product of two factors as though it were composed of two parts, and the
observable momenta are contained in the binding of the conceptual counterparts of
the two factors.

It will be seen that the field angular and linear momentum is here introduced as a
relativistic correction to the particle angular momentum, the correction being required
when wave vectors are replaced by wave functions. This is just the opposite to the
procedure in current text-books which assume the momentum (105-7) and deduce the
‘spin’, i.e. particle, angular momentum as a correction.

The investigation brings out a point, not always fully appreciated, that a vector
wave function is by no means the same thing as a wave vector which varies with
position. The wave function is an operator f which, when acting on the coordinates,
yields the variable wave vector ¥. The recognition of the operational nature of a wave
function is in keeping with the trend of modern physies which, by substituting opera-
tions for algebraic numbers, reduces the subject to a formulation of group structure.
Unfortunately we cannot very well show the distinetion in the notation, because it is
the general practice—in pure mathematics as well as in physics—to use the same
symbol for the function and the functional operator. We shall in future use ¢ to denote
the wave function as well as the variable wave vector.

In (105-3) the virtual rotation is applied to the final factor. Since the strain in the
binding is produced-by relative rotation, the sign is reversed if # denotes rotation of
the initial factor. For an initial contravariant vector y = g(x;, Zs, %3, %), the result

corresponding to (105-23) is g = get-tu-tE iy (105-81)

where 1, now operates to the left. Allowing for the reversal of sign, the angular momen-
tum is i%(l, + 4 Hy,). Using 8/dz, to denote the differential operator 0/ox, written after

its operand, the formulae (105-6) are adapted to an initial contravariant wave function
by setting 5 s

o2, 105-82
ox oz ( )
In particular the linear momentum operator becomes
= ifi 2 (105-9)
- Pu=" 5z A

106. The gradient operator

If the gradient 9/0x, is treated in the same way as an ordinary space vector, it has
the symbolic form

grad = F,;0/0x; + By50/0x,+ Eq50/02+ 4;0/02,, (106-11)
where the real time coordinate is iz,. The same operator operating to the left is denoted
by darg — B, 8/du,+ By, 8y + Has 882, + B,y 8/61,. (106-12)

Let ¢, x be vector wave functions satisfying the differential equations

(grad— M)y = 0, x*(—darg—M) =0, (106-21)
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where M may be a function of the coordinates, possibly containing # symbols. Multi-
plying the first equation initially by x* and the second finally by ¢, and subtracting,

x*(grad +darg)y = 0, (106-22)

0
or 2% (X ﬂ5¢) =0 (lu/ = 1; 29 3; 4)'
"

Using (73-1), in which p, denotes particle momentum only, this gives

2P _

o, = (106-23)

so that the equations (106-21) express the condition that the partlcle momentum
4-vector is solenoidal.

Since the wave functions represent a continuous distribution, it is preferable to use
the strain vector which gives the three-dimensional density of momentum. We set

grad, = — I;; grad = F,,0/0x, + E,,0/0x, + By, 005+ 00, (106-24)
and darg, = — E;;darg. By (72:72), ¥* = Y'E,;; and (106-2) can be written alter-
natively as (grad, + By M)y = 0, *(—darg,+ B M) = 0. (106-3)

By the same procedure as before we obtain
0814/0%1 + 089,005 + 0834 /0%5 + 0845/0t = O, (106-4)

where ¢ = ix,. This is the equation of conservation of mass for a fluid of mass density
846 and momentum density sy, So4, Sg4-

Since the expectation value of an operator @, which in special cases reduces to its
eigenvalue, is defined in (72-24) by

a = [[[yray du, dayday+ [ [ [ de, dayda,,

it is usual to normalise wave functions so that

[ [t doy darydiey = 1. (106-5)

Then ¥rit is not strictly the momentum strain vector, which would have given

f f f Uiyrde, daydey = 40 f f f 81y dayday = 4ie,

¢ being the energy of the integrated distribution. When necessary we distinguish the
vector normalised by (106-5) as the stream wvector. The stream vector is the particle
momentum vector divided by 4ée. When it is used, we can interpret 4is,¢ as the prob-
ability density and 44(s;,, So4, S34) 88 the probability flux of the carrier of ¢; and (106-4)
is the equation of continuity of the flow of probability.

We secure that the flow of probability satisfies the equation of continuity in three-
dimensional space, by making the wave functions satisfy differential equations of the
form (106-3). But if interchange circulation occurs, so that there is an extra-spatial
transfer of probability, the spatial flow will not satisfy the equation of continuity.
We then have to correct (106-3) in such a way as to make allowance for the extra-spatial
transfer. Tt is important to understand that extra-spatial flow is treated, not by ex-
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tending the analysis to include the extra dimension, but by inserting correcting terms
representing the modification of the conditions to be satisfied by the spatial flow.

The developments that are of practical importance begin with the introduction of
interchange; but we must first examine more closely the significance of the elementary
equations without interchange. We have

—ifigrad = ifidarg = ZE,p s, (106-6)

where the accent is used to distinguish field momentum from particle momentum
(unaccented). Consider the case in which M is an algebraic function or constant. Then
(106-21) becomes ‘

(ZLEsps+itiM)y =0, X, E5p,5+ M) =0. (106-7)

These equations have the same form as the wave identities (72-81) satisfied by the
particle momentum vector. Similarly (106-3) reduces to the same form as the wave
identities (72-82) satisfied by the particle momentum strain vector. This suggests that
the field momentum vector is a simple multiple of the particle momentum vector. To
prove this, multiply the first equation of (106-7) initially by yx*E,; and the second
finally by E, 9, and add; we obtain

o (—pls+ B ME) Yy =0 (v=1,23,4,0).  (106-81)
Using (73-24), D5 = X (=116 B5) U= X", 15 = X'Dos ¥+ X"V
, EM
Thus (106-81) reduces to va‘l‘p—Pus =0, (106-82)
16

We have therefore the following result: the wave equation
(—thgrad—m )Y =0 (106-91)

gives wave functions containing a field momentum vector which is n times the particle
momentum 4-vector, where n = m' fipyg (106-92)

Since the field vector has no component py;, the component p,, of the particle
momentum vector vanishes by (106-82). This was to be expected since the equations
(106-21) or (106-3) are such as to satisfy the equation of continuity in three-dimensional
space, and therefore exclude an extra-spatial flow of probability which would be
represented by pg;.

In deriving (106-81), it is assumed that M commutes with Z,; (v = 1, 2, 3, 4), so that,
by §54 (f), M must be algebraic, as stated earlier, and m' is therefore algebraic. The
effect of this limitation is to exclude electromagnetic fields. In a molar field with electro-
magnetic potential vector «,, M includes terms of the form X& ;«,. To extend the
wave equation to electromagnetic fields, we have to introduce interchange circulation.
This will be treated in due course.

107. Isostatic compensation

The use of wave functions instead of wave vectors enables us to relax a hampering
restriction. Hitherto we have only been able to deal with transitions that do not alter
the field energy and momentum. In practice this means that the particles undergoing
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transition must be unidentified members of a large assemblage, the other members
of the assemblage being in an initial state specified by scale-free characteristics. But
a wave function represents an addition both to particle momentum and field momen-
tum; and it may be possible to adjust these additions so that the field remains self-
consistent. The equation which imposes the condition that the additional particle and
field momentum are so related that the field remains self-consistent (with sufficient
accuracy for a first approximation) is called the wave equation.

In scale-free physics the field and particle momentum of the initial state have a
fixed ratio determined by the multiplicity factor. By taking » in (106-92) equal to
this ratio, we obtain wave functions adjusted to fulfil the initial condition. ‘Particles’
represented by such wave functions can be added in any number to the initial dis-
tribution without violating the self-consistency of the field. Or the initial distribution,
field and all, can be represented as composed of such particles. By (106-91) the required

wave equation is (—ihZE 50/0x,—m') ¢ = 0, (107-1)

where the field mass m’ is » times the particle mass. Since m' is now a constant, the
solution has the well-known form

U=1ve?  x=xoe" 0= (pi5%1+PisTo+ Pis¥s+ Pisy) . (107-2)

The term ‘uranoid’ was derived from analogy with the geoid. Carrying the analogy
a little farther, the field momentum and energy is the isostatic compensation of the
mountains (object-particles) added to the urancid. We have not hitherto used this
analogy because geodesy is not accustomed to deal with mountains which are ‘un-
identified members of a large assemblage’. But we are now preparing, formally at
least, to deal with individual mountains; and an important step is as far as possible to
attach to each individual its own isostatic compensation, instead of the collective
compensation that suffices in scale-free physics. In so far as the ‘mountain’ is an
excrescence it is represented by a wave vector; the whole mountain with its underlying
isostatic compensation is represented by a wave function. The latter is a self-contained
unit which can be dumped anywhere on the uranoid without upsetting the equilibrium
of the uranoid particles.

The particular case leading to the wave equation (107-1) is too elementary to be
more than a formalism. All that has been accomplished is that, instead of separate
descriptions of the particle and field constituents of the energy tensor, we can now give
a combined description contained in one pair of wave functions. It will be seen from
(107-2) that this is done by making use of the #,4 rotation, which is idle in the theory of
wave vectors, but finds application in the theory of wave functions when 6, is taken
to be a function of the coordinates. But the wave functions (107-2), which are infinite
plane waves, represent pseudo-discrete states. Thus we are still dealing with large
assemblages of particles, and have not yet got down to the problem of individual
compensation. The importance of this elementary case is its linkage on the one hand
to the scale-free theory and on the other hand to the investigation of angular momen-
tum in §105, the fertile developments being in systems with integrals of angular
momentum. '

Since the field momenrtum contained in a wave function is fully specified by a 4-vector,
there is not sufficient flexibility to provide full isostatic compensation for all the
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components of the particle momentum vector. The incomplete compensation implies
imperfect superposability, or imperfect adjustment to the boundary conditions given
by a neutral zero-temperature uranoid; and in general the maladjustment will con-
stitute a perturbation causing the state to decay more or less rapidly. This is not a
blemish in the method; if it were confined to perfectly compensated systems, it would
overlook metastable states, and states of still less stability, which nevertheless last
long enough to be physically important.

We can now state formally the purpose of the wave equation. We want to add to
the standard uranoid microscopic systems that satisfy the conditions:

(@) The system is itself in equilibrium.

(b) Its addition does not disturb the existing equilibrium of the uranoid.

To satisfy (@) the flow of probability represented by the stream vector must be a
steady circulation, and it must satisfy the equation of continuity?® as modified to take
account of the extra-spatial transfer of probability by interchange. To satisfy (b) the
added system must include its own isostatic compensation. The conditions (a) and ()
may therefore be called the conditions of continuity and isostasy. The form (106-21)
or (106-3) is determined primarily by the condition of continuity; and the same con-
siderations determine the correcting term (recognised as Coulomb energy) which has
to be introduced in order to take account of interchange. The condition of continuity
is concerned with particle momentum only. But the wave functions thus determined
introduce field energy; and we are able to adjust M so that this supplies the most
essential part of the isostatic compensation. The wave equation, as it were, kills two
birds with one stone.

108. Wave equation of the hydrogen intracule

For the internal wave equation of the hydrogen atom the coordinates are the relative
coordinates £, = z;—x, of the electron and proton; and the domain of the wave
function is the £-space of § 76. It is four-dimensional, the phase coordinate taking the
place of the time coordinate. The coordinate frame is chosen so that the external
momenta Py, Py, Py are zero; that is to say, the atom as a whole is at almost exact rest.
Lorentz transformations are inapplicable to relative coordinates; but there is a trans-
formation of £-space analogéus to.the Lorentz transformation of z-space (phase taking
the place of time). The intracule is treated as free; this means that the investigation
is carried out in system B (§27); the transformation of the results to the observational
system A has been allowed for in the experimental comparisons in Chapter 1I1.

Although we are dealing with £-space, this will not appear explicitly in our notation
and terminology, since (conformally with current practice) we shall use the quantum-
classical analogy. An occasional reminder will be given that our statements are to be
interpreted with the aid of the ‘dictionary’ in (78-3).

We couple with the wave equation the condition that the field energy —i%0/0x, has
an exact value (eigenvalue) independent of the coordinates. This condition is very
familiar in current theory, but it here appears in a different light. The quantum energy

a Steadiness involves the additional condition that s, in (106-4) is independént of ¢, if the system con-
sidered is in x-space. The systems of practical interest are in £-space, and time is not concerned. We
still have to couple with the wave equation the condition that s,¢ is constant, but for a different reason;
816 (OT Ppyy) 1s then the scale and there are obvious reasons for requiring that the scale shall be uniform
throughout the distribution.
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is only an analogue of the classical energy and is actually a classical scale; moreover it
is the quantum specified scale taken over into, and used in, molar physies which has no
definable scale of its own. The ultimate object of any quantitative description of the
characteristics of an atom must be to express them in terms of the scale of molar
experimental measurement; a quantitative description associated with a scale indeter-
minately or non-uniformly related to the molar scale does not contribute to that end.
Thus an eigenscale is essential if we are looking for immediate practical results.

In the elementary wave functions (107-2) the components p15, P35, P55 of field momen-
tum are also eigenvalues. Such wave functions are useless in £-space, since a steady
relative momentum means that the electron separates itself from the proton with
which it has been partnered, and loses itself in the environment. For a steady internal
state it is an essential condition that pi;, Pss, Pss shall not reduce to eigenvalues, and
we have to find some other way of characterising particular solutions of the wave
equation.

The origin of the x-coordinates is an arbitrary point, and we can freely transform
to another origin; but it would be nonsensical to ‘change the origin’ of relative co-
ordinates. To put it formally: the transformation x,— (z,- const.) is relativistic,
but £,—(£,+ const.) is non-relativistic. This is a vital distinction between relative
and ordinary space. Since the origin is a distinetive point of £-space, angular momen-
tum about the origin has a physical significance which is quite lacking in z-space.
In place of the eigenvalue conditions imposed on the linear momenta in 2-space in
(107-2), we shall impose eigenvalue conditions on the angular momenta in £-space.

The wave equation (106-91) will be written as

(W—p)p =0 (W=—ifigrad), (108-1)

where p is the mass of the intracule. According to our previous discussion, the algebraic
term should be (k+ 1) in order that the field momentum in the wave functions may
isostatically compensate the particle momentum. But in current theory multiplicity
factors are absorbed into the constants; and, since we have dealt elsewhere with the
problem of disentangling them, we here follow the current practice of ignoring them.
It would, in fact, be a vicious circle to insert a multiplicity factor in (108-1), because it
is as it stands the equation from which the current (optically controlled) constant u
is obtained.®

By (787, B2), py5, Pas, P35 are real and p,;, pig are imaginary. The eigenvalue of the
field component pg; will be denoted by ¢, so that ¢ is a real energy (classically a real
scale momentum). Since ,,p;,is here represented by u, the reality condition is fulfilled
by a real constant u.

The equation (108-1) is to be amended by inserting in W a term which makes allow-
ance for the effect of interchange circulation on the equation of continuity of flow of
probability. This term—the Coulomb energy—has been partially discussed in §33;
it depends on quantisation of the interchange angular momentum. It would be

a The solution (109-6) of the wave equation determines e/u; so that if 4 is multiplied by k-+1, ¢ is
multiplied by k+ 1. In the reduction from rigid to Galilean coordinates ¢ is divided by k. Thus the factor
that has been absorbed is (k+1)/k = 8. When we determine # by another method, e.g. from the mass-
defect of deuterium, compensating f-factors are introduced in the formula employed, as is seen in
(98-3).
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awkward to develop the theory of quantisation of extra-spatial circulation before
treating the quantisation of spatial circulation. We therefore postpone the actual
derivation of the Coulomb term to §110, but use it now in anticipation. The
amended operator is

W = —i(Ey50/00, + Bag 00wy + Fyg 03y + Eiyy 0)0ay + Bystfr), (108-2)

where o = 1/137. To simplify the formulae we adopt units such that # = 1.

From this point up to the end of §109, the treatment follows familiar lines, and is
substantially the same as that first given by Dirac.2 The purely symbolic treatment
(using E-symbols instead of matrix representations) is due to Temple.? The symbolic
treatment is, I think, the easiest analytically;-but our main purpose in giving the
investigation here is to complete the liaison between atomic quantum theory and the
rest of fundamental theory.

The procedure depends on finding four operators W, U;, U,, Us, which have a
common eigensymbol, so that they reduce to eigenvalues simultaneously. In practice
this is taken to be equivalent to the condition that W, U,, U,, U; mutually commute.
The latter condition is rather less general, but it is unlikely that any possible solutions
have been lost by substituting it. Two operators which have to reduce to eigenvalues
are already given, namely (108-2) and

U, = 8/0z, = i0/, (108-3)

¢t being the real phase coordinate. By straightforward test we can verify that two
operators commuting with these and with one another are

U, = —iE{Byy(x,0/0ms — 240/0%,)
+ By (250/0n, — 2, 0/025) + By o (%, 0[0xy — 25 0[021) + 1}, (108-4)
U, = —i{x,0/0x5 — 240/02, — $Hyg}. (108-5)
The eigenvalues will be denoted by
W=p, U=j Uy=u, U;=e. (108-6)

Of these, u is given as a natural constant; the others are to be evaluated in the course
of the investigation. The eigenvalues j, v are pure numbers.

There is a rigorous.theorem that commuting matrices have a common eigensymbol.
Also the maximum set of commuting E-symbols is an antitetrad, so that we cannot
have more than four mutually commuting E-numbers. We are now proceeding as
though these theorems extended to symbols containing differential operators. I do
not think that any proof has been given. The proof would be only of minor interest;
since it matters little whether there is rigorous foundation for our expectation that the
procedure will be successful so long as it actually does succeed. Another justification
for taking four operators is that by varying x, j, 4, e (not necessarily continuously) we
obtain a quadruply infinite system of classification, which suitably replaces the
elementary classification by four coordinates or by four momenta.

# In current text-books this analysis appears in a theoretical setting which is fundamentally unsound.
See, in particular, the author’s reply to Dirac, Peierls and Pryce, Proc. Camb. Phil. Soc. 38, 206-8,
1942, .

b Proc. Roy. Soc. A, 127, 349, 1930.
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109. Solution of the wave equation

By direct multiplication,

0 G 0
+E2587x2+ Essf%)

0 0 0 0 ! 0 0
= B\ gz ——@am— | + By ¥a - — Ty 5 |+ Bpp| ¥y 5 — %a 5 -
Oy 04, o, 0y 0, 0z,

1om;  TP0my, 0z,

0

(By5%y + Hog g + s 25) (E15 .
1

= —iB Uy —1—r. (109-11)
We set B, = (B + Eyy g+ Eyg )1, (109-12)
so that B? = —1, and E, anticommutes with E;. Then, by (108-2),
. _ EgU 10 o )
@ETW_"_T__;_E,+ETE45(U3+; . (].09 13)

Multiplying this finally by the common eigensymbol ¢, W, U,, U, reduce to their
eigenvalues y, j, €, and we have

0 1 il,j AN _
(a‘l‘;‘l‘ r —E7E45(€+;)+7’Erﬂ)¢—0' (109 14)

Setting ¥ = r~1¢, this gives

(£+@—%—ETE456HEM)¢ = 0. (109-15)

Let F=—-EEe+iBu, G=1iE,j—EE;a. (109-21)
Then FG+GF = —2ae, F2=f2, G2=g, | (109:22)
where fP=pr—e?, ¢® =j%—0o? (109-23)

as in (93-41). The wave equation (109-15) becomes

aqj}m )¢ = 0. (109-3)

Consider first the case in which the wave function i is ‘separably algebraic’, i.e.
having the form v, f(x;, z,, %5, 2,), Where f is an algebraic function and i, a constant
wave vector. Then ¢ is separably algebraic; and the constant wave vector ¢, must be
an eigensymbol of F' + G/r for all values of 7, and therefore an eigensymbol of ¥ and G
separately. Then, since F and @ have a common eigensymbol, F'Gf— GF is either
singular or zero. By (109-21),

HFGQ—QF) =1iE e — B, B pj+ 1By e (109-41)
The three terms on the right anticommute; hence, sql‘laring,’

HEFG— GF)® = 622 — p22 + 2o, (109-42)
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Since a singular E-number has no reciprocal, its square cannot be a non-vanishing
algebraic number. Hence €2j2 — 42+ y®x? = 0, or

€? JE—o?

e (109-43)

which agrees with (93-5). Thus the states which correspond to separably algebraic
wave functions are those already found by the method of time-tilt in § 93, namely the
metastable states and ground state.

Returning to the general case, we introduce new variables

y=2fr, x=e%, (109-51)

This is the change of variables used in solving an algebraic equation of the form (109-3),
the transformed equation being ¢x/0y + Gy/y = 0. Here the transformed equation is

. 1) x =0, (109-52)

the coefficient of the third term being singular instead of zero. Assume a solution in
series ' s=n
x= X CGy**®, (109-53)
s=0

where the C; may be non-algebraic. We assume a terminating series, because it is found
that a non-terminating series diverges. In order that the probability in a region en-
closing the origin may be finite, J YUtyrridr must be finite; thus ¥ must not be more
divergent than r—%, and ¢ and y must not be more divergent than r—* or y—*. Hence

p>—4%. (109-54)
Substituting (109-53) in (109-52), we obtain the recurrence relation
S G4pr @0, = —3(Flf—1)C, . (109-55)

Puttings = 0, (p+ &) C, = 0;sothat Cyisan eigensymbol of ¢ and — p,is an eigenvalue,
By (109-22) the only eigenvalues of G are +g¢. It will be found later that the lowest
value of § is 1; so that, by (109-23), g (taken as positive) is greater than . Hence p = ¢,
the alternative p = —g being excluded by (109-54).

Putting s = n+1 in (109-55), we have C,,, = 0, so that (F/f—1)C, = 0. Hence C,
is an eigensymbol of F, and the corresponding eigenvalue is f.

Multiplying (109-55) by (F/f+ 1), and putting s = n,

(FUf+1) (ntg+ @) Gy, = —H(Ff2=1)C, = 0 (109-56)
by (109-22). Then, since F'¢} = 20— G F,
{(n+g) (Flf+1)+ G = F[f)+2ae/f} O, = O. (109-57)
Since FC, = fC,,, this gives n+g+oaelf =0, (109-58)
€ (J2 - o)
or, by (109-23), R =t (109-6)

This is Sommerfeld’s general formula covering all states of the hydrogen atom. Here
7 is a positive integer or zero; but it remains to determine the possible values of j.

EFT 15
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Take spherical polar coordinates r, 8, ¢, so that ¢ is the azimuthal angle in the plane
%y %3. Then

.0 .
U, = —z%+%@lf723, (109-71)
and, by (108-6),
(Up—w) ¢ = —i(0/0¢ — By —iu) Y = O, (109-72)

Let { = e Exutéqfr: then, by (109-72), 0§/0¢ = 0, so that { is independent of ¢. In
particular {(0) = {(27), so that

Y(0) = e~4Butindn y(2) = g=itbH27 y(2rr). (109-73)

But wave functions are understood to be single-valued, so that yr(27) = ¢(0). Hence
e~+wir = 1, Thus

u+ § = integer (positive or negative), or 0. (109-74)

We write —i(w;,w,,w;) for the angular momentum operators, so that

Wy = X,0/003 — %50/0%, — L Eys. (109-81)
It is easily verified that Wolg— WgWy = — . (109-82)
By (108-4) and (108-5),
1By Uy = Bygy + Eqwy+ By, — %, U, = —iwy, (109-83)
Squaring the first expression we obtain? -
U= —?—wi-wi+l (109-84)
Hence (W3+wd) Yy = (— U+ U+ 1) = (=2 +uP+ 1) (109-85)

Let yr; = (wy—iwg) 3. By (109-82),
— 1y (g — i)) = (W3 — W) (—twy— 1),

so that Uiy = (0 —t0;) (U — 1) Y = (0 —10w3) (w—1)¢r
= (w—1)¥,. (109-86)

Since w, and vy (like Uy,) commute with U,, U,, W, ¥, can be substituted for ¢ without
affecting their eigenvalues. Similarly, if ¥_; = (w,+iw;) ¥, ¥_, is an eigensymbol of
U, with eigenvalue u+ 1. Repeating the process, the functions

Yy = (0 —iwg) P, Y, = (wp+i05)" Y, (109-87)

if they do not vanish, are eigensymbols with U, = u—7 and u+r, respectively, the
eigenvalues of U,, U,, W being unchanged.

Since w? = — U2 the eigenvalues of w? are all negative; and by symmetry the eigen-
values of w? and w? are all negative. It can be deduced that the eigenvalues of w3+ w2
are all negative. Then, by (109-85), u? <j2—1; so that for a fixed value of j, the series
of eigenfunctions ¥, ¥r_. must terminate in both directions. The limiting functions
Yy, Yr_ye are such that

(Wp—i0g) Y, = 0, (wpt+iwg) Ype = 0. (109-91)

2 TIn the corresponding investigation in Protons and Electrons an error occurred at this point (between
equations (9-441) and (9-442)).
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Multiplying these initially by w, + 1w, and w, —iw,,
(03+0i+ Uy Y, =0, (0i+wi-Uy)y¥ 4 =0. (109-92)
Hence, by (109-85),
—jRrup i tu =0, —Etuly+i-ug =0,

so that ' wtt =17 ww—%=—|jl (109-93)
Since u + % is an integer, the possible values of | j | are integers (excluding 0). The
possible values of » range from | j|—% to —(| j| —4%). This completes the derivation

of the Sommerfeld formula.

The inference (used above) that, since the eigenvalues of w? and w3 are all negative,
the eigenvalues of w3 + 2 are all negative, may be roughly justified as follows. Expecta-
tion values, being mean values, range between the greatest and least values; so that
the expectation values of w} and w§ are always negative and therefore the expectation
valpes of wi+wi are always negative. Since an eigenvalue is a particular case of an
expectation value, the eigenvalues of w2+ w$ are always negative.

110. The interchange momentum
We return to thé wave equation (108-1) without the Coulomb term, so that

W = —ifi(B,50[0%, + Eyys0/0xy + gy 0025+ B,50/0x,). (110-1)
We have to couple with the wave equation (W —u)yr = 0, the eigenscale condition
that 9/0x, reduces to an eigenvalue. We have seen (§108) that the momentum com-
ponent of an intracule in any direction in the 3-space normal to x, cannot reduce to an
eigenvalue. Thus, for a given i, there is only one direction in the 4-space in which the
gradient is an eigengradient; and our notation adopts this as the z, axis.

A difficulty arises because the 4-space in which the intracule is represented (£-space)
has relativistic properties analogous to those of space-time, and W is correspondingly
invariant for transformations analogous to Lorentz transformations. Just as there is
no means of defining an absolute time direction in 2-space, there is no means of defining
an absolute phase direction in §-space. Until we have defined the direction to be denoted
by z,, it is premature to impose the condition that the gradient in the z, direction, and
that direction only, is an eigengradient.

Since we can only define relative directions, the phase direction for a particular
eigenstate (which may be called the ‘proper phase’, by analogy with proper time)
must be defined relatively to the directions of other characteristics of the eigenstate.
The only other characteristic helpful in defining orientation is the angular momentum.
The angular momentum (expectation value) is a 6-vector; and a 6-vector can always
be reduced to two antiperpendicular components By, Q295+ £, £2,,, defining a pair of
antiperpendicular planes which may be taken as the coordinate planes x,z; and z, z,.
The two planes are distinguished from one another by the fact that their relativity
rotations are respectively circular and hyperbolic. We can then define the proper phase
direction z, to be a time-like axis in the fixed plane x,z,; but this leaves its particular
direction in the plane undefined; and the system contains no characteristic relative
to which it could be defined.

Thus the eigenscale condition is not that a particular component — ¢%9/0z, reduces
to an eigenvalue, but that the component in some indeterminate direction in a

15-2
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particular plane z, z, reduces to an eigenvalue. This is the phenomenon of symmetrical
degeneracy, well known in other contexts. It is treated by a procedure analogous to
the ignoration of coordinates in classical dynamics. If 2 is an arbitrary fixed axis in
the plane z, z,, the angle 6 between x, and z} is indeterminate> Since # cannot be deter-
mined, the substates corresponding to different assumed values of 8 are run together
into one state. Then 6, instead of being the label of a substate, becomes an internal
coordinate of the state; and the angular momentum conjugate to it appears in the
hamiltonian of the state.

The angular momentum conjugate to ¢ has the following significance. If the sub-
states corresponding to different values of § were distinguished, transitions between
them would occur. It is well known that as the difference of the characteristics of two
states decreases the frequency of transition increases. Here we have an extreme case
in which the difference disappears entirely, the characteristic ¢ which nominally dis-
tinguishes the substates being unobservable. Owing to the high frequency of transition,
the energy of the transition circulation (interstate energy) will form a large part of the
total energy of the intracule; and the purpose of the analysis into states is stultified.
The remedy is to 1ntroduce the combined state in which 6 is an internal coordinate; so
that what was a transition circulation between substates becomes an internal circula-
tion in the combined state, and its energy is included in the state energy determined
by the wave functions of the combined state.

If o, is a wave vector referred to the fixed frame x;x,252, it becomes

¢ = e*%Emegﬁo (110-2)

when referred to the frame x; 2, x5 2, rotated through the angle 0 (in the sense x; —x,)
relatively to the fixed frame. By (105-5) the angular momentum in the plane z,z, is
—1#(0/06 — 1 Ey,), which when applied to (110-2) gives #%E,,. Thus a wave function
W(xy, Ty, T3, 7,) referred to an indeterminate frame contains an angular momentum
thH,, resulting from the indeterminacy. By taking this momentum into account
explicitly we correct for the indeterminacy, so that the direction , is thenceforth to be
treated as a determinate direction. Accordingly our procedure is to introduce a modified
operator W, derived from W by including a term corresponding to the angular momen-
tum E,,+%. The indeterminacy of z, having been eliminated, we can now apply the con-
dition that 9/0z, reduces to an eigenvalue 4¢. This eliminates the coordinate z, in the
wave equation (Wy—u)yr = 0; so that its solutions give the usual wave functions
Yr(®y, %o, ¥3) Tepresenting distribution over a 3-space. This 3-space can be taken to
correspond to x, = 0.

At a point (@4, Z,, T, 0) the angular momentum E,,¢7% in the plane », z, gives a linear
momentum F,;4%/z, in the z, direction. Before combining this with W, we have to
make an adjustment on account of the change of volume element introduced by
ignoration of 4.

Using polar coordinates, the usual wave functions are such that '( rzdrda))lﬁ is
the probability in an element drdw. When the probability distribution is spread over
four dimensions by the indeterminacy of orientation of the 3-space, the sphere of radius
r is spread into a hypersphere. Treating the section z, = 0 as the equatorial plane of

3 Strictly a hyperhyperboloid.
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the hypersphere, we denote the latitude by A. The ordinary wave functions must then
be interpreted as giving the probability distribution in an equatorial zone of infinitesimal
width dA; so that Y (r?drdwdA) iy is the probability in an element drdwdA at A = 0,
multiplied by a constant factor due to the renormalisation. But in (110-2) the wave
function i, is extended to four dimensions in a different way, the distribution over

&, %, %4 being treated as occupying a lune of the hypersphere of infinitesimal width d@.
We have

dx, = rdA = x,d0. (110:3)
The linear momentum in the element drdwdf must be multiplied by dA/dd = z,/r,
in order to give the momentum in the usual element drdwdA. The new momentum to
be combined with W is accordingly
45%%l = E45?- (110-4)
The momentum (110-4) is to be subtracted from W. The momentum — 4% 0/dx, which is
put equal to — é¢ is the whole momentum in the E,; direction including the momentum
¢ /r found in (110-4). Thus —4%0/0z,—ifijr is the momentum which remains when the
part contributed by transition circulation between the substates is excluded. This
remainder corresponds to the internal flow in a substate which satisfies the elementary
equation of continuity on which the wave equation (W —pu)y = 0 was based. Thus
by substitutin, .
Y ¢ —iﬁi—@ for —ﬂii (110-5)
oxy, 1 0,
in W, we obtain the modified operator W, in which the momentum due to the indeter-
minacy of the frame is eliminated; so that W, satisfies the elemenfary equation
(Wy— u)¥r = 0 derived for a fixed frame.

As shown in § 33, the momentum — ¢ /r is divided by 137 in the reduction from rigid
coordinates to the observational system 4; so that in the current wave equation, the
substitution is 7 By

—zﬁ(%—k;) for _%%8754 (@ = 11=). (110-6)
This gives the result (108-2) which we used in anticipation in the theory of the hydrogen
intracule.

Attention should be called to a new point that we were not aware of in the discussion
in § 33. The momentum —i#i/r was there divided by 137 on account of the transforma-
tion of the time coordinate. But here x, is the phase, not the time, direction. But since
we have freely employed the quantum-classical analogy in which the phase is the time-
analogue, it is implied that the phase is to be transformed in the same way as the time
in order to preserve the analogy. Thus the theory of the factor o in § 33 is not invali-
dated by the substitution of the time-analogue for the actual time. The other part,
—4#.0 /o, of the momentum in the z, direction, is also divided by 137 in the transforma-
tion from rigid coordinates to the observational system; but this occurs automatically,
without any alteration of form, through the substitution of the coordinate z, in the
observational system for the rigid coordinate x,. In any case the transformation
scarcely concerns us, since —4#0/0z, is immediately replaced by its eigenvalue —ie,
and e is defined as the energy in the observational system.
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The transition circulation 1:/)etween the substates, which provides the Coulomb
term a/r in the wave equation is the interchange circulation treated from a new aspect.
Its plane E,, agrees with that given in (93-3) in the investigation of metastable states
by the method of time-tilt.

111. The two-frame transformation
Let I be the interchange operator (81-1) of the E- and F-symbols; and let

G =I(Eﬂ5+iF/¢5) H =(E/45+7;F,u5)‘[

#5 1+4 ’ £#5 T (‘le =1,2,3,4, O)' (11111)

We can easily derive the inverse formula

E I(G/l5_iH/£5)

= s~ s _ Cw—il) 1
15 1—14 H .

" — (111-12)

We shall first show that G5, H,; have the properties of pentads. The complete sets
G,, H, generated by these pentads commute with one another, and have the same
interchange operator I as K, F,. The G- and H-frames have opposite chirality to the
E- and F-frames. We have

G5 = — JI(B 5 +iF,5) I(E 5 +iF,;)
= — Ul Fs+iE5) (Bys+iks5)

—_1, (111-21)
GG+ GGz = — $i{(Fus+18,5) (Es+3E5) + (Fs+iE5) (B 5 +1F,5)}
=0 (u+v). (111-22)

We set B, = Fig = ', where " may or may not denote the same square root of —1 as .
Then i'By; = Eyg By By By, o' Byg = Fig Fos Fys By Let

V'G5 = G5 Gos G5 Gy (111-31)
Then Gy = —1, and

V' Gos = — 1(Fis+ 1 Eyg) (Bgs + 1.Fy5) (Fys + 1 Bgs) (Eys + 0 Fy5). (111-32)
This gives . ) . _
By Gos = —H1—iE 3 Fig) (1 - T Hgy Fys) (1 — iy Fy) (L — 2 Byg Fyy),

1By Qs = — (L + 1By Fig) (1 + 0 By Fy) (1 + 0 Hgg Fyg) (1 + 5. Eys Fyg).

When the right-hand sides are multiplied out, both expressions consist of 16 terms
containing different symbols E_F,.. The sum is found to be (1+1)I; hence

(Bys+ 1 Fys) Gos = (1 +12) 1. (111-33)
Multiplying initially by I and finally by G,
—I(Bys+iFy) = (1+1) Ggge
Hence, by (111-11), Gos = — Qi = V' G5 Goy Qs Gy (111-41)

The results (111-21), (111-22) and (111-41) show that G; is a pentad, and G4 = —4'.
Similar results are found for H,;. It is easily verified that the symbols @,; commute
with the symbols H ;. :
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The two pentads generate complete sets G, H,; but the equations (111-11), (111-12)
apply only to the generating pentads. We see at once from (111-11) that H,; = IG¢ ;[;
and this relation extends to all the symbols, e.g. Hy = Hys Hys = IG; 1[Gy 1 = IG, 1.
Thus 7 is the interchange operator of the G- and H-frames; so that

326G H,=1=}XE,F, (111-42)

Consider the 5-vectors (¢ = 15,25, 35,45, 05),

p=28p, p =2Fp, p=26,p, w=2XHw, (111-51)

where Pﬂ=«/—12(pﬂ+p;), wﬂ=«—/1§(p;—pﬂ). (111-52)
Then I(E,p,+iF,p,) = %I{(E +iF) (P, + ) +i(F,+iE,) (9~ pu)}

(1+2)(G,p,+iH, @), (111-53)

J2
so that z*(P+wx) = I(p+ip’). (111-54)
The relation can also be written as
Pt itw = P+ip’ (111-55)
by (82-6).2
It appears from (111-52) that the transformation of the double frame from EF to
GH accompanies a transformation of two ordinary particles into external and internal
particles. Itissubject to two limitations. First, it applies to two particles of equal mass,
e.g. two satellite electrons in an atom or two protons in a nucleus. Secondly, the
simple transformation (111-54) applies only to the linear momentum vector. This
suggests that its proper application is to field momentum. Since 7 has not been identified
with ¢', the sign of ¢ can be reversed in (111-54); so that it is equivalent to two real
equations determining P and w separately.
For practical application we need a corresponding relation between strain vectors.

As in (72-84), the strain vector form of the wave equation is (H —e){r = 0, where, if
there is no interchange energy,

V'H = Byypy+ By po+ Bgyps+ Eysm  (p, = —i%0/0,). (111-61)
Consider two non-interacting particles with wave equations
(Hy—€)yp =0, (Hy—€)y' =0

in the F-frame and F-frame respectively. The two equations can be combined as

(H,+iH,—e) ¥ = 0, (111-62)
where ¥ is the double wave function ry". We wish to transform (111-62) into a double
wave equation for the extracule and intracule, having a corresponding form

(Hy +iH,— 7o) = 0. (111-63)

We are only concerned with the transformation of the ‘hamiltonian’ H, +¢H,, into
Hy +iH,, because the eigenfunctions @ and eigenvalues 7, will be determined by
solving the equation (111-63), not by transforming ¥ and ¢,. Eigenstates of the

a In (111-54) P is associated with the F-frame and p’ with the E-frame.
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extracule and intracule do not in general correspond to eigenstates of the original
particles; so that there is no question of transforming the quantities ¥, ¢ which are
characteristic of an eigenstate.

To suit (111-61) we must use the pentad 4 instead of 5 as generating pentad of the
G'H-frame; so that the suffix x4 is substituted for 45 in (111-11). We drop the factor
/2 in (111-52), so that Py = Pyt B B, = D Py (111-64)
In the ordinary two-particle transformation (26-12) for particles of equal mass
P, =p,+p),, but w, = }(p,—p,). Thus H; as here defined is twice the usual hamil-
tonian of the intracule.

Associating Hy with the G-frame and H, with the H-frame we obtain, by (111-53),

T(H, +iH,) = 31 +4) (Hy+iH)), (111-71)
with VHy = Gy Pr+ Gy Py + Gy P+ G452m,} (111-72)
i'H, = Hyw, + Hyywy+ Hyyw,.

The H,; term vanishes by (111-64), the masses m of the two particles being equal. It
will be remembered that in the two-particle transformation the intracule is bound;
so that it is correct that there should be no rest-mass term in H,.

Thus far the analysis has only formal interest. But we can now insert the Coulomb
term in the hamiltonian H, of the intracule, and use (111-71) to transform to the z, 2’
representation. By §110 the effect of the Coulomb term is to change e to e— 20/ /r in
the wave equation (H;—e€)1r = 0. The term is here doubled, because H; is twice the
usual hamiltonian and ¢ is twice the actual energy. It has also been reversed in sign,
because we are now considering like charges.» The Coulomb correction is to be included

in H,, and gives an addition SH, = 2ahjr = 2¢%/er. (111-81)

Hence by (111-71), the increments of H,, I, due to the Coulomb correction are given by
I(0H,+6H,) = (1 +1)1e?/cr. (111-82)

The equation with — 1 substituted for ¢+ must also be satisfied. Henece
0H, = —1Ie?jcr, O0H, = Ie*/cr. (111-83)

The term §H, depends partly on the coordinates of the accented particle, and will
therefore be regarded as a perturbing energy in the wave equation (H,—¢)yr = 0 of
the accented particle. We have therefore the result that the interchange energy e?/cr
found in the relative hamiltonian of two electrons (or two protons) appears also as a
perturbing energy in the hamiltonian of either electron (or proton); but whereas in
the relative hamiltonian it is an algebraic term, as a perturbing energy it has the
symbolic coefficient + I.

The ambiguity does not mean that the sign is a matter of indifference, but that the
convention necessary to define the sign has not yet been introduced. If'the coordinate
of one particle is not measured from the other particle it is measured from the physical
origin. In (111-64) the sign of w is such that the unaccented particle is treated as origin

2 The Coulomb energy of like charges was deduced from that of unlike charges in § 49.
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for the accented particle—not vice versa. It is therefore the coordinate z’ that is
comparable with £; so that, by (111-83), the positive sign should be taken. Accordingly
the perturbing Coulomb energy is 1efer. (111-9)

Evidently the same rule applies to non-Coulombian energy. In the relative wave
equation of two protons (used in the calculation of scattering of protons by protons)
it is the algebraic quantity Ae %" if the equation is in strain-vector form. When
introduced as a perturbing energy in the wave equation of one of the protons (also in
strain-vector form), it is 74e—*"",

Ag shown in § 81, 7 is resolvable into two factors which may be distinguished as the
spin and co-spin factors. In extra-nuclear physics only the spin factor (Dirac’s inter-
change operator) is used; presumably there is some justification for assuming that in
these conditions the co-spin factor reduces to 1. 1t is quite common to use the complete
operator I, given by fundamental theory, for the interaction between protons in a
nucleus.

112. Electromagnetic potentials

According to the last section, the hamiltonian of an object-electron perturbed by
other electrons is

H = H,+ 2, 0H,, (112-11)

where i Hy = —ifi{ B i—i—E’ 2 E 2 +7 (112-12)
W Wiy = —n Y50, 248x2+ % G, 1577

0H, = Ie*fery, I,=31X, B (F), (112-13)

and 7, is the distance of the sth electron. The object-electron is in the frame £ ; and
the frames (F)), of the perturbing electrons commute with £, and with one another.

The unperturbed hamiltonian I, postulates a neutral environment. Since we cannot
create negative charges without counterbalancing positive charges, perturbations due
to positive charges should be included in (112-11). The analysis of §111 applies to
particles of equal mass; so that positrons must be employed as the carriers of the positive
charges. There, however, need not be the unattached positrons observed in a Wilson
chamber. Normally the object-electron will be in an environment of protons and
electrons; but, for the purpose of perturbation theory, we represent the proton as the
sum of a positron and a neutral particle (not a neutron). The neutral particle is part of
the standard environment postulated for the unperturbed hamiltonian; so that only
the positron contributes to 20H,.

We shall investigate the perturbation due to a very large number of electrons and
positrons, none of which is near enough for its individual effect to be significant. The
calculation of X8H, is then simplified by statistical averaging. By (73:25) —isyF, is
the operational form of the particle momentum strain vector of the particle in the
F-frame. The averaging consists in replacing F, by its expectation value is,/s;s,
neglecting the fluctuation which will become insignificant when the X, summation is
applied.» Asin (106-4), s;; is the density and 8,4, $,,, 834 is the flux; so that (814, Saa, S34)/S16

# The procedure also neglects correlation of ¥, and F,. Reference to this will be made later.
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is the velocity u,, u,, u; of the carrier of s,. Denoting by (I) the part of I corresponding
to 4 = 14,24, 34,16, we have, after averaging,

(1) = 2i(Byyuy + Bpgus 4 Byyus + Eyg). (112-2)
By (112-13), this gives a perturbation energy
(25 0H,) = }i(Hygeg k1 + Bpgeg i + Hyy ey K3+ 169 Ky), (112:3)

where e, is the charge (—¢) of the object-electron, and

eg(ty, Ugy Us)y e,
Ky, Koy Kg = Z’—s—l&—:—:ts, Ky = 20—;8-. (112-4)
This is the classical formula for the electromagnetic potential vector «,, disregarding
retardation.

Including (112-3) the wave equation (H —e€) i = 0 becomes

. 0 ., 0
{E14( - T/ﬁa — %eoKl) -+ E24( — @ﬁa—xz - '41‘60 K2)
o 0 .
+E34(——zﬁa—x?’— %eoks) —i{e—1eyk,) +E45m} ¥r=0. (112:5)

Thus the wave equation for an electron in a molar electromagnetic field of (unretarded)
potential «, is obtained by substituting

0 0
—h— -1 — ol — = .
Zﬁaxﬂ teok, for zﬁaxﬂ (r=1,2,3,4) (112-6)

in the elementary wave equation.

We here reach an important junction with current theory; since, apart from the
factor %, this is the result currently accepted. The factor 1 is very important, but it
must be considered in conjunction with the other numerical factors (multiplicity and
f-factors) which current wave mechanics ignores. The applications of (112-6) are
treated later.

Equation (112-5) does not pretend to be the complete solution of the problem of
finding the resultant perturbation due to a large number of distant charges. For
example, it does not include the perturbation responsible for the Compton effect. The
part of the perturbing field taken into account in (112-5) is generally called the longi-
tudinal field; there remains a transverse or radiation field which is investigated by other
methods. The distinctive feature of the part of the perturbation given by (112-3) is
that it depends only on characteristics of the perturbing system familiar in molar
measurement, namely the distribution of charge density and current density. If we
introduce averaged values of other components of ¥, little or no progress is made;
because there still remains the theoretical problem of connectmg these averaged values
with quantities that could be measured observationally.

There is another ground for discriminating between the terms here treated and the
rest of the perturbation. The function of the wave equation is to determine a field
momentum 4-vector isostatically compensating the corresponding part of the particle
momentum vector; and it is this part of the particle momentum vector that we have
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taken into account in (ZH;). When we deal with the uncompensated components new
considerations arise. The lack of compensation involves instability of the states, with
a consequent interstate energy and an associated radiation field. Thus the determination
of the part of the perturbation not included in (112-5) is bound up with the quantum
theory of radiation.

By averaging F, without reference to its co-factor £, in I, we effectively assume that
the average value of B, F, is the product of the average values of &, and F,, or that the
state of the perturbing system is uninfluenced by the state of the object-electron.
Actually the object-electron would polarise the perturbing system. If therefore there
is sensible energy due to interaction between the object-particle and the charge and
current which it itself induces in the environment (Debye-Hiickel energy), this has
been neglected in (112-5). In fact, the current wave equation postulates a rigid electro-
magnetic as well as a rigid gravitational field. -

An object-proton can be treated in a similar way; and its wave equation is modified
in accordance with (112-6).



Chapter XI
e THE MOLAR ELECTROMAGNETIC FIELD

PR
113. Gauge transformations (molar theory)

A molar electromagnetic field is specified by a 4-vector potential x,, whose curl
F,, gives the magnetic and electric force. In 1918 H. Weyl? introduced a unified
geometry of gravitational and electromagnetic fields, in which «, was identified with
a gauge vector concerned in the definition of the local standard of length. Tt has since
appeared that Weyl’s gauge vector should have been identified with ix,; so that real
electromagnetic potentials correspond to complex gauge. With this amendment
Weyl’s representation is an important auxiliary in quantum theory.

In 1921 I put forward a generalisation of Weyl’s theory.? This has been further
developed by Einstein and others. Probably the most far-reaching extension is
Schrodinger’s recent theory.© This kind of development has a rightful place in theo-
retical physics; but I do not think it is the road to quantum theory, and it will not much
concern us here. Just as quantum mechanics links up with intermediate rather than
with general relativity, so quantum electrodynamics links up with Weyl’s elementary
gauge theory rather than with my generalisation of it. Investigators have had the
idea that by developing geometries of the widest generality imaginable they may hit
on the complication responsible for the phenomenon of atomicity. But we should
rather look to the other end—to specially simplified conditions. For, in statistical
physies, simplicity is paradoxically the most potent source of complication since it
gives rise to degeneracy.

I shall first summarise the molar theory of gauge transformation. The coordinates
are unaltered but the measure ds of an interval is changed to ds’ = yds, where y is a
function of the coordinates. We then have

By= By G =V 9 =79 =g =g (113-1)

As in §87 we introduce ‘parallel displacement’ of vectors. The relation described as
parallelism is defined only for small distances and is not integrable. 1t sets up a one-
to-one correspondence of vectors at neighbouring points. Take a line element at a
point z,, and transfer it by parallel displacement to x,+dx,. Let its initial length
measured with the local standard at z, be [, and its final length measured with the local

standard at z,+dxz, be [ +dl. Evidently dl must be proportional to /; and since di/l is
a function of dx,, dx,, dz,, dz,, we can set

dlfl = oy de, +oydy +oyda, + o, dz,, (113-21)

where the o, are functions of the coordinates. Itis here assumed that dl/l is independent
of the orientation of the line element; this is a simplifying condition in Weyl’s theory,
which is discarded in the generalised theories mentioned above. Using the summation

convention, we have
’ l=1¢, 0= o,dw, (113-22)

a Berlin Sitzungsberichte, 30 May 1918,

b Proc. Roy. Soc. A, 99, 104, 1921.

¢ Proc. Roy. Irish Acad. Sect. A, 49, 53, 1943; 225, 1944; 237, 1944; 275, 1944.; 50, 143, 1945.
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Since o, dz, is not necessarily a perfect differential, [ at a distant point is not deter-
minate unless a route of transfer is specified.
Applying a gauge transformation, I becomes I’ = y{; so that -

ol dx, = dl'[l = difl+dyly. (118-23)
Hence o), = o ,+0(logy)/dx, (113-24)
and curlo), = curlo,. (113-25)

In classical electromagnetic theory the potential vector «, is indeterminate to the
extent of an arbitrary additive gradient. By (113-24) o, is likewise indeterminate to
the extent of an arbitrary additive gradient if arbitrary change of gauge system is
admissible. The principle of Weyl’s theory is an identification of x, with o, so that the
characteristic indeterminacy of the potential 4-vector is represented by an indeter-
minacy of gauge system. No hypothesis is involved in this identification; it is simply
a question of employing a geometrical representation of fundamental electromagnetic
quantities which suitably exhibits their characteristic properties. But it will not
advance the unification of physics unless it harmonises with a representation of the
mechanico-metrical quantities which exhibits their characteristic properties Here lies
a difficulty, because in the mechanico-metrical part of physics there is no indeterminacy
of gauge system. Lengths and times are defined everywhere by a quantum-specified
standard in the locality.

The difficulty is overcome by identifying o, with ix,. Then (113-24) gives

K, = K,+0¢[0x, (y= %), (113-31)

and the indeterminacy of measure associated with the indeterminacy of electro-
magnetic potential k, is expressed by gauge transformations ¢, where ¢ is a real
funetion of the coordinates. In the transformations ds’ = e*#ds,

| ds | is invariant. (113-32)

Comparison with the quantum-specified standard furnishes a measure which is
necessarily real. It determines the invariant modulus, but leaves the complex argument
of ds indeterminate.

Hitherto we have fixed the complex argument of ds, and of other physical quantities
by ‘reality conditions’; thus ds is imaginary for a length, and real for a time. Reality
conditions inhibit the gauge transformations ds—e*ds, on which unified theory is
based. But we have seen that reality conditions are boundary conditions furnished by
the neutral uranoid. If we retain the same conditions when an electromagnetic field
is present, it is implied that the field is included in the object-system, so that the
environment of the object-system is still a neutral uranoid. This is the normal pro-
cedure. But to place «, in the object-system, and g, (or at least the inertial part ofg,,)
in the environment, is the reverse of unified treatment. In unified theory the environ-
ment is the whole non-neutral distribution of matter responsible for the combined
electromagnetic and inertial-gravitational field; and the standard reality conditions
are then inapplicable. Gauge transformations are no longer inhibited.

It will be seen that (wi’g the amended identification of o) a gauge system is a ‘reality
system’. In a neutral environment one particular reality system stands out as the
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least complicated way of connecting the mathematical variates with observational
measures; it gives the standard reality conditions. In non-neutral environment no
reality system is distinguished as being simpler than the others. Our inability to define
a preferential reality system has to be met in the same way as our inability to define a
preferential time axis. When we are unable to give a physical definition of the particular
time-axis we are using, we can only employ equations which are invariant for trans-
formations of the time axis, so that they are true however the axis is identified;
similarly, when we are unable to define the reality we are using, we can only employ
equations which are invariant for transformations of the reality system. Thus a non-
neutral environment forces on us the study of gauge transformations or transformations
of reality system; and particular use is made of tensors and equations which are gauge-
invariant. . )
Since the electromagnetic force F,, is curlk,, it follows from (113-31) that

¥, =F,. (113-41)

Thus F,, is a gauge-invariant tensor. On the other hand, F'# = y=*F#. Both «, and
F,, are real in the gauge system in which the o, that have been identified with ix, were
first defined. Hence, by (113-31) and (113-41), they are real in all gauge systems. But
F# is not in general real.

The next step is to find gauge-invariant tensors containing g,,.2 We introduce a
modified 3-index symbol

v, o} = {pv,a} +i(g,, k*— 9,7k, —9,%K,), (113-42)

which is easily shown to be gauge-invariant. The gauge-invariant R. C. tensor, obtained
by substituting *{...} for{...} in the ordinary R.C. tensor, is a rather complicated expres-
sion which gives on contraction the gauge-invariant Einstein tensor

*G}w = G/w + 26, K, — 29 4 Ko K5 — 128, + K, +K,,+ ng““). (113-43)

{(Where « has two suffixes, the second suffix denotes covariant differentiation.) Multi-
plying by g+, we obtain the gauge-covariant invariant

*Q = G — 6K,k — 61k, (113-44)

which satisfies G o=y G). (113-45)

We can go on to construct certain integrals over four-dimensional regions which
are in-invariant, i.e. invariant both for coordinate transformations and gauge trans-
formations. The simplest in-invariants are

[C@R—gdr, [F,Fw-gdr, [6,*GwJ-gdr, [J(—|*G,|}dr, (1135)
where | ... | denotes the determinant of the components. '

The most compact way of formulating molar mechanics is by an action principle.
Accepting this formulation, the problem of unified molar theory is to find the appro-
priate generalisation of the mechanical action integral (which\;s known to be f G \J—gdr)
that will cover also electromagnetic phenomena. The mechanical action is real; and
in order to play the same role the generalised action should be real in the gauge system
(i.e. reality system) which we employ. But as soon as we introduce electromagnetic

3 Mathematical Theory of Relativity, §§ 86, 87.
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fields, we lose the criterion by which the original reality system was defined. Being
unable to specify a particular system, we have to make the generalised action real in
all gauge systems. It must therefore be an in-invariant—presumably one of the
simple in-invariants in (113-5) or a combination of them.

The integrals (113-5) are invariant, not only for the imaginary gauge transformations
in which we are primarily interested, but for real gauge transformations. They are
therefore scale-free characteristics. We can be quite sure that the quantum is not
lurking in any of them. It would seem that this line of investigation is directed more
towards setting up a molar theory logically independent of quantal (fixed-scale)
physics than towards unifying molar and microscopic physics. However, a considerable
part of wave mechanics is scale-free; and for this gauge-invariance is appropriate.

114. Action invariants

To illustrate the main principles we take for the action density the elementary, but
rather artificial combination,

" A= ("G*—aF, Fr)/-g, (114-1)

where « is a numerical constant. It may be assumed that « has order of magnitude
unity; because “¢,,+2¢F,, occurs as a natural combination in (113:43), and *G? is of
the same order of magnitude as *G,,*G*".

If % is to play the part of a generalisation of mechanical action density it will have
to be real—real in all gauge systems because it is in-invariant. The «, are uncondition-
ally real, but the character of the g, depends on the gauge system. We can always
choose the gauge system, so that

k%, = 0. (114-2)

It is a common practice to impose the condition (114-2) on «,, thus restricting (but not
wholly removing) its indeterminacy; in particular the «, calculated as the retarded
potential due to charge-current sources J, by the wave equation (J «, = J, has this re-
stricted definition. Then, by (113-44), U will be real if g, is real. Thus, with the action-
density (114-1), there is at any rate no inconsistency in assuming the existence of a
gauge system in which the g, as well as the « , are real; and this will naturally be adopted

?
as the standard gauge system. In this system the action becomes

A = P —aF, Fr—12Gk,k*+ 36(x, k%) (114-3)

In the absence of electromagnetic potential A = G2. Thus the action here employed
_is the square of the ordinary mechanical action, which is proportional to G. The

quaring does not essentially alter the derived mechanical equations, which depend on
infinitesimal variations of @ or G2; but the magnitude of the action is altogether dif-
ferent unless we employ a unit of length such that (for the system that is being treated)
G is of order unity. Since G' = 6/R?, where R is the radius of space-time curvature,
this unit is enormous;® so that in any actual electric field potential gradients measured
in this unit are very large compared with the potentials themselves. Thus k& is very
small compared with F,, F#. Thus, « and G being of order unity, the third term in

& Mathematical Theory of Relativity, § T4-1.
b For density 1 g.cm.™3, R is of order 10% km.
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(114-3) is in all practical conditions very small compared with the second, and the
fourth term is utterly insignificant. For practical purposes (114-3) becomes

A= (Gz—aﬁ;wF/”)\/—g, (114-4)

the minute cross-terms having only academic significance.

The mechanical action is all-comprehensive, since the derived energy tensor satisfies
the law of conservation identically. It would be idle to add electrical action F,, F#
to an invariant which already contains it. Thus if (114-4) has physical significance it
must be as representing the difference—the non-electrical part of the mechanical
action—and the constant « is accordingly positive.

We are left with the question, How is the mechanical action density, here given by
@?,/—g, to be reduced to the action density G'y/—g of ordinary mechanics? In Weyl’s
original investigation the energy tensor found by Hamiltonian differentiation of
@2 /g was found to be

2MG , — 39,,(G —24)}, (114-5)

where, after the variation, 1@ was put equal to A. If A is identified with the cosmical
constant, this is the usual energy tensor. But the identification is inadmissible, since
1@ is neither constant nor cosmical. The gulf between G2 .,/—g and @ ,/— g is much wider
than Weyl supposed; it is the gulf between quadratic and linear analysis—between
sub-threshold and super-threshold theory.

Whereas the sources of the electrical potentials «, are usually comprised in a small
region which can be treated in isolation from the rest of the universe, all parts of the
universe contribute to the inertial-gravitational potentials g . The localised mechanical
action & \/—g used in ordinary mechanics, which like F,, I \/— g is treated as isolable,
is an adaptation of the more fundamental action G2,/—g. It involves wholesale re-
definitions. Mutual energies of pairs of particles are replaced by self energies localised
in the particles. A convention, such as that adopted in rigid field theory, is required so
that changes of a local system can be studied without regard to the consequent changes
of gravitational energy of the remote environment. Thus, in molar unified theory, the
final step required to connect the quadratic action G2 \/— g with the linear action ¢ \/—g,

— far from being the simple step commonly supposed, raises many of the problems which
have been treated in detail earlier in this book. There is not much inducement to us to
pursue farther a line of approach which raises these problems over again. I shall
therefore refer only briefly to the other invariants in (113-5), and then proceed to the
application of gauge transformations to the theory developed in this book.

Attempts have been made to find an action in-invariant which avoids the artificiality
of (114-1) but leads to substantially the same result, differences being confined to the
cross-terms which in any case are too small to have practical significance. Consider
first the action density U, = *@,,*G*./—g. Proceeding as before the condition that
the g, ‘as well as 9, are real is

Gk + K, + Ky, = 0. (114-6)

So far as I can make out, this condition cannot be imposed on the «, without restricting
the generality of the electromagnetic field F,. Disregarding this difficulty, the action
reduces to G, G# —4F,, F# together with negligible terms in «,. The chief point of
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interest is that the negative sign appears automatically. The original identification of
k, with a real gauge vector gave G, G* +4F,, F# which is not a physically significant
combination.

The action density ¥, = 4{—|*G,, |} is now generally accepted as the most funda-
mental of the in-invariants.» This is because of its importance in the generalised theory
mentioned at the beginning of § 113. Starting with a geometry defined by an affine
connection, we can, before introducing a metric, obtain an affine R.C. tensor *B ..
Contracting this, we obtain the tensor *@,,. Still without introducing any metric, we
can form the determinant |*@,, | and hence the in-invariant density ,. The other
integrais in (113-5) all involve ,/—g, and cannot be introduced until a metric has been
defined. If the key to world-structure lay in molar physics, we should certainly expect
to find it in 9.

115. Gauge transformations (microscopic theory)

In this section we shall consider uniform gauge transformations y = €%, where ¢
is a constant.
The usual formulae for the mechanical and electrical energy tensors are

Tﬂv = —(8mrk)~1 {Gﬂv_ %g,uv G}’ (115-11)
E)=-F, Fvoc_]_%gﬂv “ﬂFaﬂ, (115-12)

In a uniform gauge transformation &, and F,, are unchanged; and, since g# varies
as 7 Trecy=2, Brocy-t. (115-2)
The difference of ‘gauge dimensions’ forbids any simple association of 7)” and £,
This shows at once why, in attempts to construct a unified molar theory, E is associ-
ated with a mechanical tensor derived from G* instead of with 7} which is derived
from @. Introducing the tensor density € = E.—g, the forms unchanged by
a ansf tion
gauge transformatio are T,, Gp. (115-3)

This dissimilarity, which is an obstacle to molar unification, is just what is required
by the microscopic unification of theory in §§ 89-91. It means that # is a state energy
tensor, and therefore combines not with the classical or interstate tensor 7' but with
its cross-dual Zy0. In our previous work we have not distinguished between tensors
and tensor densities; but, when attention is paid to the ,/—g factor, the correct relation
between the interstate and state energy tensors is

T%o0 = Zo. (115-41)
This is proved as follows:

The analysis in §§ 89-91 deals with wave vectors, not wave functions, and therefore
with pseudo-discrete distributions. To avoid unnecessary complication the adopted
normalisation corresponds to one particle per unit volume, so that the energy density
of a particle is the same as the energy. The region containing one particle is marked
out invariantly in the coordinate system, so that when the gauge is changed the
coordinate volume f dx, dx,dxg is invariant, although the metrical volume is changed.
Densities per unit coordinate volume are represented by tensor-densities. In Galilean
coordinates a three-dimensional energy or momentum density is represented by

a Mathematical Theory of Relativity, equation (88-4) and § 101.

EFT 16
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components either of a space tensor of a strain vector; or in general coordinates (when
the densiby is per unit coordinate volume) by a space tensor-density or a strain vector-
density. Thus, setting Z,° = §,8° where §, 8" are the strain vector factors of the
strain tensor, the equation 7%, = Z,° = §,8’° found in Galilean coordinates becomes

more generally (Too /= 9)% = Son/—g . 80— 7, (115-42)

so that Ty, = Z,°\/—g = 3,° as stated.

Physically, 1%, = 8,° connects the density (for unit occupation) of the interstate
with the product of the densities (for unit occupation) of the two states concerned in it.
As unit occupation is defined with reference to a normalisation volume fixed in the
coordinate system, and having therefore an invariant coordinate volume, the factor
y/—¢ is introduced linearly on one side and quadratically on the other side of the
equation, as shown in (115-42).

Our earlier difficulty was that € cannot be included in T ” because of the difference
of gauge dimensions. But it can be included in 3,. For the matrix 3 is simply a
transpose of the matrix 7}, which by (115-3) is gauge-invariant like €.

The recognition that €, is part of the state energy tensor 8, of quantum theory,
means that the electrical parts of the quantum energy tensors of a large number of
systems can build up directly a molar electromagnetic field energy tensor €,; whereas
the mechanical energy tensor can only be derived by a cross-dual transformation. The
description of microscopic systems in quantum theory by a tensor directly connected
with the electromagnetic field energy tensor but only indirectly with the mechanical
field tensor is a natural consequence of the historical development. The quantum first
made its appearance in the theory of radiation—electromagnetic waves; and the
formative stages of development of the theory were dominated by spectroscopy.

116. Indices of wave tensors

A quantity which in gauge transformations varies as y* will be said to have index r.
elements AT, = p,p,. This is the tensor generalisation of Ap = mV ", where m is the
mass of the particle and V is the volume over which it is distributed. The representation
of a volume-reciprocal as a 4-vector in the corresponding time direction depends on
the invariance of \—gdz,dz,desdr,. If U = f N—gdxyda,dxs, U™t has the same
character as dz,, and is therefore a contravariant vector (U—1). Thus the identification
of the second factor in 7, is p” = (U™'). In a gauge transformation dx,dx,dx; is
invariant, so that U-! varies as (,/—¢)~* or y~=%. Thus p” varies as Y4, and p, varies
as y—2. By (115-3) T}, is gauge-invariant; hence p, varies as y*:

The momentum vector p, of an object-particle has index 2. The energy tensor 1,,, is the
product of vectors p,, p), of indices 2 and — 2. (116-1)

Since p, has index 2, p# has index 0. Thus the contravariant momentum vector is
gauge-invariant and remains real in gauge transformations. This was to be expected
because the foregoing analysis refers to the classical tensor 7),,; and in classical physics
the momentum vector, whose components directly correspond to the observed energy

and momentum, is contravariant.
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Introducing wave vectors, the energy tensor 7, is the outer product of the symbolic
vectors P=yy*, P =g (116-21)

Since P has index 2 and P’ has index — 2, we take i, x to have index 1 and ¥, w to have
index —1. The strain tensor Z,° is obtained by the cross-dual permutation, and is the
outer product of the strain vectors

S =yd*, 8 = yw*. (116-22)

The strain vectors are gauge-invariant, each having one factor of index 1 and one
factor of index — 1.2

We have seen that Z,° is the quantum energy tensor, and its factors §, S’ are quan-

tum momentum vectors. Although classically they are strain vectors they are the

space vectors of micro space. Thus, in quantum designation, a momentum vector

P = yry* is the product of wave vectors of indices 1 and —1; and the gauge trans-

formation is W = e, x = Xoe~?, (116-31)

where ¢ is real. The corresponding strain vector § = yri/" is derived by putting
x* = 'H,;; so the " has index —1, and the gauge transformation of § is

U=, Yt =pTe . (116:32)
It will be seen that the complex conjugate relation of ¢ and 3" is not disturbed by a
gauge transformation.

We might alternatively take i to have index —1, and y or ¢ to have index 1. This
is equivalent to reversing the sign of 4 (without altering ¢, x); so that, if initially the
frame is right-handed, ¢ is changed from #,; to — |, and the chirality of the frame is
reversed. This will reverse the sign of the charge represented by the wave vectors. -
Taking (116-31) and (116-32) to refer to a positively charged particle, the gauge
transformation for a negatively charged particle is

Y= 1vpe®, YT =1te. (116:33)
Setting x = 01in (113-31), we see that a field of electromagnetic potential ), = 9¢/0z,,
can be created artificially by a gauge transformation, just as a field of gravitational
potential can be created artificially by a coordinate transformation. In both cases
the artificial field is more restricted than a natural field; so that it is not possible to
transform away a natural electromagnetic or gravitational field. A gravitational field
isirreducible if B ,,, # 0, and an electromagnetic field is irreducible if ¥, 4 0. Formally,
we can regard an irreducible field as having been created by a non-integrable coordinate
or gauge transformation applied to an initially field-free system.
For the artificial field created by the gauge transformation (116-31) of a constant
wave vector i,

op ., 0
%K‘u)w = ﬁé;v;w = (*‘@ha—xﬂ) w,
so that 7k 4 is the field momentum vector. Let

0
0 . _ ¥ © .
Py = zﬁax 7k e (116-4)
f/2
# We have seen that T, is strictly 3,°. But when the indices of the tensors are specified, so that their
gauge transformations are explicitly stated, it is redundant to continue to distinguish tensors and tensor-
densities; and we can revert to the earlier notation 7%, = Z% The unitary factor ,/—g only manifests

itself in the gauge transformation.

16-2
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In this special case p) = 0. In general a wave function has not the special form 1,
and is therefore not reducible to a constant wave vector by a change of gauge system.
Then p), is a gauge-invariant operator; that is to say, its expectation value is gauge-
invariant. For in the transformation ¢’ = e¥y, p becomes

, o 0 0 :
(2%) =—zﬁ%—ﬁ(/<ﬂ+5§—), (116-51)
I 2

so that (P9 ¥ = eplyr. (116-52)
Hence, multiplying by 't = e~*y*,

Wy = il . (116-53)

In gravitational theory the elementary equations in Galilean coordinates are put
into tensor form by substituting covariant derivatives for ordinary derivatives. The
tensor equations cover artificial gravitational fields, and by the principle of equi-
valence they are assumed to apply also to natural fields. Similarly we put the elemen-
tary wave equation into gauge-invariant form by substituting (116-4) for —i#0/0x,.
It then covers artificial electromagnetic fields, and by the principle of equivalence it
is assumed to apply also to natural fields. The assumption of equivalence is none the
less a hypothesis because it is dignified by the name of a principle. Here, however, the
conclusion is immediately justified, because we have already determined the wave
equation in an electromagnetic field by a direct method. We found in (112:6) that,
for a particle in z-space, the required substitution is

5 ,
0 = —ih— —legk,. 116-

.p,u ? ax/‘ 4—60Kﬂ ( 6 6)

Here «, is in ordinary units. We have been using a theoretical unit defined by the
identification o, = ix, in §113. Comparing (116-4) and (116-6), the identification is

ik, = 4.137c0, (116-7)

when &, is in ordinary units. The operator (116-4) refers to a positive particle with
eg = e; for a negative particle ¥ has index —1, and the sign of the second term is
reversed. The reversal is provided for automatically in (116-6) by the sign of e,.

A uniform gauge transformation is a (complex) scale transformation, and the multi-
plicity factor k£ enters into gauge theory in the same way as in the elementary theory of
scale-free systems. Considering a pseudo-discrete distribution, H® varies as s~V by
(16-1), where s is the particle density and H° is any component of the total energy
tensor; in particular p varies ag s~*, Primarily we define wave vectors so that ¥ry* is
the momentum vector in the normalisation volume; but when wave vectors are replaced
by wave functions we follow the usual practice of normalising them to represent the
stream vector (§106). Distinguishing the stream vector by . xZ, the mass-density p
is a component of the momentum strain vector and the particle density or probability
density s is a component of the stream strain vector. The rule poc s~V% shows that in a
scale transformation, if ¢yry* is multiplied by 2, ¥, vi is multiplied by y—2%; and this will
apply to the complex transformation y = e¢*. We have found that the momentum
vector (classical) has index 2, so that the stream vector has index — 2k. The negative
sign, which applies to every kind of particle, has been provided for by the inversion
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of energy; and we are only concerned with the multiplication of the index of the
stream vector by k& when the multiplicity is changed from 1 to k. When the cross-dual
transformation is applied as before to obtain the quantum momentum and stream
vectors, the stream vector will be the product of wave functions ¥, x, of indices k
and — k. These are the wave functions currently employed.
Thus, when the multiplicity factor is taken into account, the operator (116-6)
becomes 5
Py = —iﬁa—xﬂ—%keo/cﬂ. (116-8)
It is useful to compare (116-8) with the corresponding operator in the wave equation
of the intracule. By (110-6), p? for the intracule is —4#%0/0x,—ie?/r; or if we take z,
to be the real coordinate, 3 e
. 0 __ Py S il .
Py = wﬁax4+r. (116-91)
The other components of field momentum are unmodified. This will agree with (116-8) if
k,=(0,0,0,¢efr), e =—e, k=4 (116-92)

Thus the wave equation of the intracule is the same as that of an electron in a molar electro-
static field of potential efr, if the electron is assigned o multiplicity 4.

The foregoing is a mathematical comparison only. The actual multiplicity of a
electron is not 4 but 10; and the accepted value of its mass is determined on that basis.
A molar electrostatic potential «, is associated with the actual time direction, whereas
(116-91) is associated with the time analogue. Current text-books take the electron
moving about a fixed centre of molar force to be a literal representation of the con-
ditions in a hydrogen atom. This is quite indefensible. Perhaps the most serious result
of this error is that the magnetic moment of the intracule is mistaken for the magnetic
moment of the electron. Since, in (116-8), kis 10 for an electron its magnetic moment
is 2-5 times larger than that of an intracule. Magnetic moments will be investigated
in detail in the next three sections.

117. Magnetic moments

We have found that the wave equation in a molar electromagnetic field is obtained
by substituting (116-8) for —#0/0x,. The equation is accordingly (W—m)yr = 0,
where .

W= ?E’Mpg, Y, = —ihd[ox,— thegk . (117-1)

Here x,, «, are the imaginary coordinate and potential. Multiplying the equation by
W +m, we obtain (W2—m2) = 0. (117-2)
which is called the second order wave equation. Squaring W, we obtain

W2—m? = —{(p)* + (p3)* + (p8)* + (pR)*+m?} + L, (117-31)

L = — Yike X H,, (0 ,[ox, — 0x,[ox,) = — }ikeohZH,, T, (117-32)

2
where F,, is the electromagnetic force (6-vector).
If the field «, is artificial L = 0, and (117-2) gives

(1p8)? = m®+ (P2 + (p3)? + (P3)%, (117-33)
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so that p), formally resembles a momentum vector; it is, in fact, the momentum vector
generalised to the arbitrary gauge defined by «,. For the first order wave equation the
principle (i.e. hypothesis) of equivalence is valid, and the equation obtained for an
artificial field applies unchanged to an irreducible field; but we see that the principle
is not valid for (117-33). An irreducible field introduces an extra term L, which might

be regarded as due to an additional component p? where L = — (p?)2.
If pi, p3, pg are not too large, we can replace (117-:33) by the approximate formula
0y2 0)2 0Y2
60 — 4 (PP (120;1 + (P (117-34)

€’being the real energy ip). Then an irreducible field adds the term — L/2m on the
right-hand side of (117-34). The term — L/2m is gauge invariant.
If the field consists of a magnetic force F,; = H along the z; axis, the additional

energy is L hehH
“om —27 Byt = IMH Hygt, ‘ (117-4)
where M = ke,#/8m. (117-5)

Thus the additional energy is the product of the magnetic force H and the quantity I,
which must accordingly be a magnetic moment. The symbolic coefficient H,;i agrees
with this interpretation. By the table in § 69 a real classical energy has the coefficient
E,; hence, setting INHE,,¢ = F,;0e, we obtain

de = H . E, M. (117-6)

By the same table E,, is the correct symbolic coefficient for the z, component of a real
classical magnetic moment. Regarded as a vector, the magnetic moment is

Eny MR, EpMM, B, (117-71)

This is the operational form; in application, Ky, Fy,, Fy; (which in quantum designation
is the spin Hy1, By ¢, Bio9) will be replaced by eigenvalues or expectation values.
Ifthe field consists of an electric force i, 4, we find in the same way an electric moment

Eis MM, Hy M, Egs M. (117-72)

By the table in § 69 this is a real electric moment. But there is an important contrast
between the magnetic and electric moments. The extended momentum vector in a
neutral uranoid contains a magnetic but not an electric moment. The standard reality
conditions make the linear momentum E,;7 the real operator (i.e. the operator having
a real expectation value) and forbid the electric moment ;.2 Thus the electrie
moment can only occur as a second order effect due to the modification of the reality
conditions by the presence of the field. The contrast is recognised in elementary
physics; permanent magnetisation is possible, but not permanent electric polarisation.

& Mathematical notation does not distinguish between an E “i component, and ¢ times an E, com-
ponent. Similarly it does not distinguish between the derivative with respect to a coordinate ¢z, and —1¢
times the derivative with respect to a coordinate x. This sometimes leads to physically imaginary quan-
tities appearing in the equations which should in fact be zero. Thus in the standard reality conditions
the electric moment is not — ¢ times the real quantity IM(E 54, B,5%, Byyt), but simply zero; and there is
no question of trying to provide a physical interpretation of an imaginary energy resulting from its inter-
action with the electric force.
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An applied magnetic field makes apparent the magnetic moments already existing in
particles in neutral space; an applied electric field only makes apparent the electric
moments which it has itself created by polarising the particles.

It is instructive to compare the magnitudes of the terms in x, and in ¥, in the second
order wave equation. By a gauge transformation we can make «, = 0 at the centroid
of the probability distribution; then elsewhere «, is of order LF,, where [ is the linear
extension of the distribution. The ratio of M/e is roughly #/m, or in practical units
fi/me, which is at most 107! em. Thus normally ex, will be larger than M F,,; but its
effect is unsystematic, positive and negative values of «, largely compensating one
another. On the other hand F,, (being a molar force) is constant over a microscopic
system; and conditions of quantisation commonly arise in which its co-factor £, has
a constant eigenvalue over the system. ’

The foregoing theory relates to particles in z-space; but with a little adaptation it
can be applied to intracules. The electric moment then drops out of consideration
altogether; because the dimension z, corresponding to the components ¥, Iy, Fy, does
not exist in §-space, being replaced by the phase dimension. The axes z,, %,, 3, with
which the magnetic force is associated are co-gredient in £-space and x-space. Since
the field is molar, we can treat ok ,/dz, as constant over a microscopic system. Then the
sum of the terms ¢, «, for the proton and electron is

eK,u(xv) - eKﬂ(CL‘;) = - e%%‘j (CE;, - xv) = - egv 2,;,/:'
Since this is a function of §, only it is carried by the intracule. Denoting it by e,x,(£,),
we have ¢g = —e, 0k,/0§, = 0k ,[0x,. Thus, if the intracule is treated as a particle with
charge —e (with the convention that £ is measured from the positive to the negative
charge), the equivalent magnetic field in §-space is the same as in z-space. We have
seen that in applying (116-8) to the intracule k& must be taken to be 4. Hence, by (117-8)
the magnetic moment of the intracule is — Lefi/u, or in practical units

el .
M= — 20 (intracule). (117-8)
This is the value currently accepted, only it is wrongly attributed to the electron.

118. Magnetic moment of the hydrogen atom

Hitherto the intracules have received the largest share of our attention. To avoid
unnecessary complication, they have been attached to extracules in a state of almost
exact rest, whose momentum vector accordingly reduces (almost exactly) to a single
component K, p,;. In general, however, the extracule has, like other simple particles,
an extended momentum vector with 16 components. In neutral space 6 components
are dormant, but some of these become active when the extracule is in a molar magnetic
field. Evidently the activated components are those which have been found to repre-
sent magnetic moment, namely D, Pos, Pos- Lhis would appear to change the extracule
from a ¥, to a ¥, particle. But, as explained in § 28, we do not normally treat electro-
magnetic and mechanical degrees of freedom on the same footing. Unified theory is
confined to certain fundamental investigations, and the results are translated in terms
of separated theory. The effects of the additional degrees of freedom are accordingly
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put into the form of correcting terms or factors to be inserted in the mechanical
equations of a V;, extracule.

Since the operational form p, of p, is proportional to B, we set

Por: Pozs Pos = M(Hoy, Eog, Hog). (118-1)

By (73-23), M = —ip,q; but this identification is uninformative. In X, p, particular
fixed scale units are used in order that mass, charge, angular momentum and magnetic
moment may be dealt with homogeneously. Owing to the practice of absorbing
multiplicity factors into the constants, the fixed scale units may differ for different
kinds of particle. Thus the identification of M with — ¢p;¢ does not tell us its value in
practical units of magnetic moment, even if we happen to know the value of —ip;in
practical units of mass or of angular momentum. We have, however, the formula
(117-5) giving IR in practical units; inserting the constant ¢ (which has, as usual, been
put equal to 1 in the theoretical investigation),

M = keyti/8mec. (118-2)

The term ‘ magnetic moment’ is used both for the constant M and the vector (118-1)
or its expectation value. Normally in a distribution of hydrogen atoms the magnetic
moment of the extracules, i.e. the vector, is zero. This, of course, means that the
pseudo-discrete wave functions representing the assemblage of extracules are such
that the expectation values of Ky, Ey,, Hy; are zero; it does not refer to I, which is a
natural constant for hydrogen extracules.

Since k£ = 10 and m = m for the hydrogen extracule, (118-2) gives

5 ef

=—— 118
22mc (118:3)

This will be called the siandard magnetic moment.

The only point that presents any difficulty is whether we are justified in setting e, = e
for an extracule. It might indeed be suggested that in view of the neutrality of the
extracule ¢, = 0. But that is clearly impossible, because M, which is equal to —ip,
cannot vanish; and in any case, we know that a system can have a magnetic moment
although its charge may be zero. The effect of neutrality of the extracule is that the
observation definition of the directions of the Ky, E,,, E,; axes conventionally
adopted as positive breaks down; so that 9t must be regarded as a signless quantity.

For the purpose of microscopic theory it would be much simplerif the electromagnetic
potential were defined as ek, 50 as to avoid the complication of introducing the square
root of fic/137. The charges of a proton and electron would then be + 1 and —1, and the
magnetic moment of the extracule would be M/e = 57%/2mc. It would then be evident
that the sole function of the charge is to fix the sign; and the only effect of absence of
charge is to leave the sign indeterminate for lack of the usual reference standard.

There exist several observational methods of determining the magnetic moment of
the hydrogen extracule. In comparing the theory with the observational results, it
cannot be assumed that the observational data have been reduced in such a way as to
give the standard magnetic moment. As in the case of the masses of the elementary
particles, we have to distinguish the standard and the current value. By far the most
accurate determination is obtained by the gyromagnetic method; and we shall now



The Molar Electromagnetic Field 249

proceed to calculate the current magneiic moment, i.e. the quantity directly comparable
with the published gyromagnetic values.

The experiment is performed in an alternating magnetic field having a fixed axis
which we take to be z;. The result is that the component py; is de-stabilised, and set in
forced oscillation (ultimately adjusted to resonance) by the field. The extracule
executing the oscillation isaV},, and accordingly has a rest energy ' = 1% 7, the mass u
being that of the stabilised ¥}, extracule. This reduction of rest mass represents the
removal of the stabilised energy associated with py; preparatory to the insertion of
the specifically calculated energy MH E;; due to this degree of freedom. Thereafter the
extracule is treated as a mechanical ¥, particle perturbed by the energy MHE,;; and
accordingly 9t must be calculated as for a V}, particle of mass m'. This gives

511 efi
2°102nc¢
We have further to determine the f-factors. The relevant theory is in §§ 96, 97, and
has been rather stringently checked by the calculation of the mass-defect of deuterium.
Additional energies, brought into the theory after the primary adjustment of the
constants to the observational system, have to be multiplied by £ if the analysis is
linear and by f2 if the analysis is quadratic. Here the analysis is of a third kind, the
magnetic energy being introduced in the second order wave equation; but it is easily
seen that the factor is £2, as in quadratic analysis. The magnetic energy first appears
as the term L in (117-31), and is added to m? or €2 A new theoretical term added to e
has to be multiplied by £, so as to reduce it to the observational scale to which ¢ already
conforms; correspondingly the new term L added to €* has to be multiplied by 52
Alternatively, we see directly from (97-42) that additional energy arising from an
electromagnetic field F,, must be multiplied by #2. Our final result is accordingly

511, eh ok
= =, - 2ﬁ=2' — .
M= 5.7 = 279065 (1185)

The observational results are given in ‘nuclear magnetons’. The nuclear magneton
is properly e'%’/2m,c, where ', %’ are the molarly controlled values; but actually
e'fi{2m ¢ is used. This is because the measured quantity is not the energy 3H, but the
corresponding frequency IMH /7i; so the constant directly determined is 9 /%. Since the
distinction between # and %’ is not recognised, the factor f1= required to reduce # to
#' has been omitted in the reductions. Our result (118-5) gives

M = 2-7899¢'fi/2m,,c. (118-6)
The observed value? is (2-7896 + 0-0008) e'%/2m,, c.

M= (118-4)

119. Magnetic moment of the neutron

The hydrogen atom contains two magnetic moment vectors carried respectively by
theintracule and extracule. In a strong magnetic field the weak coupling between them
is broken, and each precesses independently about the axis of the field. Thus in the
gyromagnetic experiment the resonance frequency for the extracule is found without
interference from the intracule. In order that its magnetic moment may be quite
separate from that of the extracule, the intracule must be free; and consequently the
extracule is a hydrocule extracule. This is the separation we have become acoustomed

2 Millman and Kusch, Phys. Rev. 60, 91, 1941.
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to, and it has been taken for granted in the preceding theoretical calculation of the
moment of the extracule. It is worth noticing for future reference that this separation
is responsible for one factor £ in (118-5); in conformity with the observational system,
we assign the molarly controlled mass » to the hydrocule instead of to the standard
particle, but we rectify it when we insert f-factors, so that the true mass m/f of the
hydrocule is ultimately used. The other factor £ rectifies the field strength H = F,,
as required by (97-41).

In the neutron thereis only one magnetic moment vector, that of the co-spin intracule
being zero. This follows because what is here called (classically) the magnetic moment
vector is the spin vector in quantum designation; and the co-spin state of the intracule
is defined as a state of zero spin. Thus in the conditions of the gyromagnetic experiment
the neutron behaves as a whole—not as an extracule and intracule resonating in-
dependently.

It is only to a limited extent that the extracule and intracule can be treated as
independent particles. Generally such independence as there is is one-gided; transitions
of the intracule do not affect the extracule; but any change of the extracule from the
initial state affects the intracule. In the two-particle transformation the frame has
to be such that the extracule is at rest; so that motion of the extracule involves a Lorentz
transformation of the characteristics of the intracule. Other complications will occur
if the extracule is given an angular momentum or magnetic moment. These com-
plications are described by the general term ‘coupling’; their chief importance is in
spectroscopy. In the neutron even the one-sided independence ceases to exist, because
there are no transitions, the co-spin intracule having only one state. The magnetic
field does not cause any separation; and it appears that (except in nuclear conditions)
the neutron behaves as an indivisible particle.

Let us assume that for the purpose of applying magnetic perturbation energy the
neutron is to be treated as a simple particle. We have not hitherto met with this kind
of problem, though it must occur frequently in the passage from multiplicative to
additive analysis. Previously when two particles have been considered together they
have been treated as a bi-particle represented by double wave functions. Our theory
starts from the standard bi-particle; so that the whole process is that a bi-particle is
separated multiplicatively into an extracule and intracule, and these are joined
additively into a particle treated as simple. The important difference for our purpose
is that the original ocoupation factor j of the bi-particle is split into occupation factors
g% of the extracule and intracule; so that j* is the occupation factor of the neutron. Thus
the gauge-index of the occupation factor, and therefore of the particle density and
stream vector, is halved. This is due to the fact that the particle density is now a density
in 3-space instead of in 6-space. Since the momentum vector is unaffected, the relation
poc s~Ukin § 116 is replaced by poc s~#%; and 1k must be used instead of & in the formula
for the magnetic energy.

Th’ﬁependence poc s~k i a case of the general dependence p oc s—7% given by (15-52).
The usual simplification [ = 1, depends on the classifying characteristics having the
same dimensions as the characteristic p that is being investigated. By adopting the
characteristics of the extracule and intracule, instead of their products, as classifying
characteristics, of the neutron, we halve the dimensions of the classifying character-
istics, so that I = 2.
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We have found (§95) that the multiplicity of the co-spin intracule is 4—a result
which has been checked by the observed mass of the neutron. The multiplicity of the
extracule is 10. Thus, regarded as a simple particle, the neutron has 14 degrees of
freedom; and the factor 3k to be used in place of & in the magnetic moment is 7. In

place of (118-4) we have 711 ok

T = 4 T02m, 07

where m,, is the mass of the neutron. The factor 11, due to the removal of the stabilised

magnetic energy contained in the ordinary rest mass prior to insertion of the specifically

calculated energy, affects the neutron in the same way as the hydrogen extracule.
The g-factor which rectifies the measurement of ¥, has to be inserted; but the other

f-factor, associated with the freeing of the intracule, is absent in the neutron, since the

intracule is included in the resonating system. In other words, the mass m, of the

neutron takes the place of the mass m/f of the hydrocule extracule. The final formula

is accordingly 711 . el

=—.—f_—-. 119-1
M= 4 10'32mnc (119-1)
Expressed in nuclear magnetons, this gives
M, = 1-9371 -1, (119-2)
2my, ¢

The observed coefficient (Alvarez and Bloch) is 1-935 + 0-020.

A much more accurate observational value can be obtained if we may assume that
the magnetic moment of the neutron is the difference of the moments of deuterium
and hydrogen. The observed difference is

et

Qmp ¢

My —My = 1-9331 (119-3)
The difference between I, and My —PN), is about 12 times the probable error. It is
in the right direction; for the assumption that in deuterium the hydrogen and neutron
moments are rigidly antiparallel gives a lower limit to the moment of the neutron.
The discrepancy there presumably measures the looseness of coupling. As a deter-
mination of this quantity may be useful in nuclear physics, it is worth while to find it
as accurately as possible. Combining the theoretical moments Iz and M, with the
observed ratio pg/uy = 3:257 + 0-001, we have

My — M, — M, = — 0-0038 + 0-0003 nuclear magnetrons. (119-4)

N



Chapter XII
RADIATION

121. Radiation by a moving electron

[ Editorial note. There was no § 120 in the manuscript.]

The quantum theory of radiation is usually prefaced by a classical calculation of the
force on an electron in non-uniform motion. The customary treatment, which divides
the elementary charge into infinitesimal elements and assumes that these act on one
another according to Maxwellian laws, is made obsolete by the interchange theory of
Coulomb energy; electromagnetic interaction first arises when we consider two charges
whose carriers can undergo interchange, and there is no question of electrical forces
between elements of the same elementary charge. A further objection to the treatment
is that the result contains an infinite term which has to be ignored. Also the analysis
is unnecessarily complicated. We shall give an independent derivation of the formula
for the radiation of momentum, appropriate to the present theory.

The retarded electrostatic potential @ and vector potential 4,, 4,, 4; due to a point
charge e can be expanded in the series®

& - e(l 1d?r 1d%% 1 d%3 )’

*t2dr 6dE T2 T

w, du, 1d2(u) 1d(%m) (121-1)
4, = oo -Tea g e EEL ),

r @t T2 a6 dp

where the velocity u, of the charge and the distance r from the charge to the point
considered are unretarded; that is to say, they refer to the same instant as @ and 4.
The electric force is '

od 04,
e (121-2)
We consider first the third term in & and the second term in 4,. Denoting the
components of r by z,,, we have 0r?/ox, = 2z, and dz,/di = —u,. The two terms together
give T
X, = e(—ldzuudz““) = Zeij (121-3)
e 3 diz - df? g7

Thus the charge e exerts on any other charge ¢’ (not necessarily concentrated at a
point) a mechanical force Zee’si, which is independent of the distribution of ¢’. In
particular a charge + e exerts on the opposite charge which it induces in its environment
a mechanical force P, = —Ze%i,. Inserting a factor ¢=3, as required by the dimensions,
the force in practical units is 92
‘Pa = —ggsu“. (121'4)

The force derived from the other terms of (121-1) is not independent of 7, and cannot
be calculated unless we know the distribution of the induced charge. This would
require a detailed specification of the conductivity and dielectric constant of the sur-

8 Mathematical Theory of Relativity, 2nd ed. p. 253.
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rounding material. We therefore confine attention to an environment in which these
terms are negligible. Since the earlier terms become large as -0 and the later terms
become large as 7 —co, the induced charge must be kept within limits r,, 7,, where r;
is not unduly small and r, not unduly large. This means that the point-charge must be
isolated with no other particles within a distance r,, and that there must be sufficient
polarisable matter between r; and r, to quench its field.

The physical reason for these conditions is apparent, if we regard the momentum
communicated to the induced charge as transmitted by radiation. The distance r at
which the radiated momentum is regarded as finally detached from the system in
which it originates is necessarily conventional, and the limit r, is taken as a criterion
that the momentum has got clean away. The limit 7, is introduced in order that the
momentum may be quickly absorbed and passed on to the particles in the environment.
As 7, increases the proportion of radiant momentum in transit increases, and our
formula which gives the momentum taken up by the induced charge, i.e. the particles
of the environment, begins to deviate from the total momentum radiated.

Itis clear that, so far as the theory of radiation is concerned nothing would be gained
by investigating the terms omitted in (121-3). The condition that they are negligible
is in fact the condition that the investigation applies to radiation.

Besides the induced charge and currents the environment contains the charges
responsible for the molar electromagnetic field which causes the changes of u,. This
field is specified as a datum of the problem, and the momentum necessary to make it
vary with time in the prescribed way is furnished by unstated sources. It is therefore
to be treated as rigid. Our calculation of P, has therefore to be confined to the induced
charge and current which constitute the non-rigid part of the environment. In radia-
* tion theory the formal distinction is that 1%;3 interaction between the initial charge
distribution which provides the extraneous field and the object-system is represented
by an inflowing wave of radiation and the interaction between the object-system and
the induced charge distribution is represented by an outflowing wave.

The magnetic force derived from (121-1) contains a term

2

o, = %eg—ﬂ(lguz—lz%), (121-5)
and corresponding components H,, H,, where I, l,, [; are the direction cosines of 7.
This term is of the same order as (121-3), and its action on the induced currents should
be added to P,. The justification for neglecting it appears to be that, when u, is a
rapidly alternating velocity, the phase of the induced current will vary rapidly with r,
so that the integrated force is small. (A steady velocity u, would, of course, be
eliminated by a Lorentz transformation before applying (121-4).)

In current theory the classical formula (121-4) is made the basis of the quantum
calculation, a quantum dynamics being derived from classical dynamics by semi-
empirical rules. That is not our method; and we are concerned with the classical formula
only as a check, the quantum formula being required to converge to the classical formula
under certain limiting conditions. For either purpose it is desirable to relate the fore-
going investigation rather more closely to the quantum point of view. Taking a rigid
environment which contains an electromagnetic field, we superpose on it an intracule,
i.e. an elementary electric doublet. For small separations the doublet as a whole is
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taken as object-system, and the perturbation of its quantised states by the extraneous
field (Zeeman and Stark effects) is calculated. For large separations the carrier of the
negative charge is treated separately as object-system, and the positive charge then
becomes the induced charge added to the environment. At the junction of the two
treatments, the momentum transmitted from the negative to the positive charge,
which was at first a result of internal interaction and formed part of the momentum
balance of the steady quantised state, becomes re-classified as momentum radiated
from the object-system to the environment.

122, Transition probabilities

Consider a system represented by wave vectors iy, X, of indices 1, —1. If a field of
uniform electrostatic potential «, is introduced, the resulting perturbation can be found
in the following way. We eliminate the potential by a gauge transformation y = e¥,
where w/k, is a constant depending on the multiplicity. This turns the wave vectors

into wave functions U= ool g = ypetie, (122-11)

The momentum vector P = yrx* remains constant in time but this constancy is relative
to the modified gauge. By (116-1) a classical momentum vector has index 2; so that the
ordinary unit-standard, constant in the initial-(Galilean) gauge, becomes e in the
modified gauge. Thus in the initial gauge the momentum vector of the system is
P’ = Pe~, Accordingly the perturbation caused by the field «, consists in changing
the constant vector P inte a periodic vector P’. The effect is due to the fact that wave
vectors of indices 1, — 1 give the quantum analogue of momentum, actual (classical)
momentum being given by wave vectors of indices 1, 1. The measures are made to
agree in the initial gauge system; but when &, is introduced, or the equivalent change
of gauge is made, a periodic difference appears.

We apply this to the oscillator occupying the interstate between two states @y, @,.
There is a conjugate interstate with momentum vector P’f, which in steady conditions
is constrained to have the same occupation (§91); so that, although the momentum
vectors of the two oscillators are complex, their sum is real. The wave functions ¥, x
represent the transition circulation in the interstate. Since P’ (the momentum in
ordinary measure) is reversed in direction at intervals 7r/w, this is evidently the half-
period of the circulation. If at4 = 0 there is one unit of occupation in each of the two
states, there will again be one unit in each state at ¢ = 7/w, but the two units will be
interchanged. Thus 7/w is the average time in which a particle makes a transition from
@, to @, or from ), to ¢,. The reciprocal

w = o (122-12)

is the transition probability per unit time.

It may be suggested that the result should be doubled because two oscillators are
engaged in the transfer; but (122-12) is right as it stands. The state energy tensor Z,°
corresponds to unit occupation of two states; and when it is transformed into an inter-
state energy tensor T}, the result corresponds to unit occupation of two interstates.
Thus the two particles in continual transition with half-period 7/w correspond to two
oscillators.
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It is fairly evident that the two oscillators with complex time factors i, e=%t can
be replaced by two oscillators with real time factors cos ¥, sin w#, or more generally
(since the origin of ¢ is arbitrary) cos (wf+ ), sin (wt+a). By giving a uniform prob-
ability distribution we obtain a smooth instead of a lumpy circulation.

For @, @, we shall take two orthogonal eigenstates of an intracule represented by
wave functions ¥, efeilo/™, yf e=tedo® and yr,eiea/®, 1} e~it/h, The quantum energies of
the two states are ¢, €,; and the phase coordinate, or time analogue, is here denoted by
ty to distinguish it from the actual time ¢. (The coordinate referred to in the preceding
caleulation of transition probability must, of course, be the actual time.) The wave
functions are as usual normalised to represent probability density and flux. Thus
Yr; " and Y, 9" are strictly stream strain vectors; but we shall not discriminate between
stream vectors and momentum vectors, until the distinction becomes pertinent.

Making the cross-dual permutation, the momentum space vector of the interstate

is the product P, = el — oy, o, e, (122-2)
where fiwy = €, — €. (122-3)

Since P, is a factor of the classical energy tensor, it has index 2 by (116-1). We have
therefore to assign the indices so that ¢, ¥} have index 1 and ¥{, ¢, have index —1.
Setting P = o, ¢f, we derive Py from P by the gauge transformation y = et which
also transforms 9, ¥} into

Yryetioddo, oyt ghiog, (122-41)

We have seen (§116) that, although the covariant momentum vector F, varies with
gauge, the contravariant vector P is gauge-invariant. In order that the treatment of
interstates may be formally assimilated to the treatment of state we must use the gauge-
invariant vector in both cases, namely the covariant momentum vector for the state
and the contravariant momentum vector for the interstate.

The momentum vector P = ¢, 9} in the initial gauge can indifferently be taken to
be covariant or contravariant.2 But if we take it to be contravariant the index of one
of the factors ¥y, ¥} must be reversed. Thus P° is the product of the wave functions

r, €¥ioddo, W‘; g—H0dy B (122-42)

which is gauge-invariant, as required.

Quantum theory differs from classical relativity theory in using a covariant instead
of a contravariant momentum vector. It will be seen that, if we continue to use wave
functions with opposite exponentials as in (122-42), the change over from covariant
to contravariant representation occurs automatically in the transformation from the
quantum or state energy tensor to the classical or interstate energy tensor; it is required
to counteract the bringing together of two wave functions of the same index by the
cross-dual permutation.

# The wave functions ¢y, ¥4} in the E- and F-frames give, on multiplication, a space vector in the
crossed frame (C-frame). Since they are functions of the space coordinates, the space axes in the three
frames must be taken as congruent; but there is nothing to connect directioris of the time and phase axes
in the C-frame with those in the E- and F-frames, and covariance in the E-frame has to be defined in-
dependently of covariance in the C-frame. Since the C-frame contains classical vectors, covariance in
the C-frame has to agree with the classical definition; but in the E-frame it is decided by an arbitrary
convention which can be reversed. The combination of £ and F wave vectors chosen to give a covariant
€ vector will, when the convention is reversed, give a contravariant C vector.
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In general P° will contain non-vanishing components py;, D5, P35, Which require
isostatic compensation in order that the steady state may be maintained. As a first
approximation we shall use mean values (taken in a way to be defined later) so that
D1ss Pazs P35 are constants independent of x;, #,, ;. The field momentum required for
compensation is provided by introducing the exponential factors

LU0 150105502+ D35%5) T . (]_22'51)

in the wave functions. It is well known that in order to maintain steady occupation of
two quantum states, and therefore a steady circulation between them, a field of radia-
tion must be present. It is the momentum of this equilibrating field that is introduced
in (122-51). From another point of view, the momentum is introduced because the
energy tensor Z,° of the quantum states ¢, ¢, contains recalcitrant terms, and
therefore the classical tensor T}, into which it transforms is not self-conserved.

The complete isostatic compensation includes also compensation for the component
in the phase dimension, so that (122-51) is extended to?

ei’5(1715-11+ﬁ25m2+p35x3+p45t0)/ﬁ, ( 122- 52)

The fourth term must agree with the term already present in the wave functions
(122-42), so that pasli = ooy, (122:53)
This conclusion requires justification; for we have added momentum py;, Par, P35 to
equilibrate the system, and it seems arbitrary to assume that no p,; momentum will
need to be added. Why should we assume that the radiation field maintaining the steady
occupation containg no p,; momentum? The reason is that the p,; momentum is the
scale; and to make a change in it would mean that we changed our scale in passing from
the states to the interstates. The interstate energy tensor, which is classical, is intrinsic-
ally scale-free, since classical physics provides no standard of its own; but a definite
scale is given to it by importing a quantum-specified standard. When new field
momentum is introduced to equilibrate the interstate circulation, there must be no
change of scale momentum, because it is just at this point that the fixed scale provided by
the quantisation of the states @y, @y of the intracule is being transferred to the classical
description by interstate tensors. Equation (122-53) is the condition that our final result
(transition probability per unit time) shall be referred to the quantum-specified
standard of time.

We have often remarked that the quantum method of treating an object-system as
a superposition on a rigid environment leads to a double reckoning of energy; by taking
each particle in turn as object-particle, and adding the energies, we get twice the whole
energy of the universe. This is relative to the single reckoning in molarrelativity theory,
where the environment is not treated as rigid. Thus in transferring the quantum scale
to the classical tensors it is the practice to halve the reckoning or scale of energy and
momentum—an operation more usually viewed in the converse way as doubling the
reckoning of energy when we pass from the relativity to the quantum treatment. To
allow for this (122-53) must be replaced by

Pas/f = 1w, (122-54)

@ Isostatic compensation is limited to the 4-vector corresponding to the dimensions of the domain of
probability distribution. If a time coordinate is introduced, this is not extended to a 5-vector, because
probability is not distributed over time. The system is, as it were, loft to tumble over in the time direction;
or, to put it more formally, the unbalanced momentum in the time direction is the cause of transitions.
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We have been proceeding step by step from the quantum system of representation
to the classical. The coordinates z;, z,, @5 are still the relative coordinates, used in the
description of the states @, ¢, of the intracule, and p,;, pas, Ps5 are relative momenta,
conjugate to them. These have now become incongruous since the classical tensor is
exhibited in 2-space, not §-space; and our next step is designed to eliminate them.

Since we are using the contravariant vector P°, we can write p,s/p,; = v,, Where
(vy,v5,75) has the usual meaning of velocity (of flow of probability). Following an
element of the probability in its motion,

O(P15%1 + DasTa + D35 ¥3) = Pas¥20t = Hiw,v?6t (122-61)

by (122:54). The theory refers to wave functions superposed on a rigid field, so that
220t is here reckoned in rigid coordinates. In passing to Galilean coordinates »28¢
transforms as 22/¢; so that, by (19-7), it is divided by 136. As in the corresponding
reduction of the Coulomb energy term, the divisor is changed to 137 in the final reduc-
tion to the observational system. Thus, in the observational system,

O(P15%1 + Pos Ty + Dg5%5) = Hiwyv20E/137;
and the exponential (122-51) becomes
ettt (o = Luv?/187). (122-62)
By (122-12), this gives a transition probability per unit time,

w= %T-l—:l,ﬁ”%o- , (122-63)
Reverting to rigid coordinates, the complete exponential obtained by combining
(122-42) and (122-51) is equal to etGiodotivsv®i® which by (122-54) can be written
eE2itmetytimv®h 5, - heing put equal to m or (since ¢ = 1) mc?. Thus the kinetic energy
Lma? is associated with ¢ in the same way that the rest energy mc? is associated with £,.
If we had not taken into account the change from double to single reckoning, and had
used (122-53), we should have had mv?* and mc? associated with ¢ and {—an obvious
incongruity.

The wave functions are normalised, according to the usual practice, to give directly
the probability density and flux corresponding to one unit of probability in each state
and therefore one unit in each interstate; so that the expectation value of v is given by
v, = f YL B 5y dV. Or, ﬁ;f, is the direction of the resultant velocity in the interstate,

v =0, = [y} B¢ dV. (122-7)

The momentum vector of an oscillator does not satisfy the standard reality conditions;
so that a physically real momentum | py;| will be represented symbolically by
E ;e | p,5 |, where a is no longer necessarily 0 or Jm. The expectation value of the
momentum along the physically real axis z, will be given by the operational form
E,ei*. The factor ¢’* has been omitted in (122-7), but the omission is rectified by taking
the modulus of the result, since the momentum along a real axis is necessarily real.
We define v by (122-7), and must therefore substitute | v |? for »2 in (122-63).

For a linear oscillator the use of the average velocity is a good first approximation,
but it is unsuitable when the flow has varying directions in three dimensions. We

EFT 17
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therefore separate the averaging in magnitude from the averaging in direction, and
treat the three-dimensional oscillator as a superposition of linear oscillators in all
- directions. This is the more necessary because the discrete states Q,, @, are defined as
having a definite orientation, whereas in a natural assemblage the atoms will have
varying orientation, and the representative atom which we study will have a probability
distribution of orientation of the states concerned in transition. Accordingly, the whole
transition probability is divided into elements w,df2, where df2 is an element of solid
angle in the direction £,;; and our formula becomes finally

1 o2

w2 = 7 et

0y d2, (122-8)

where v, and v, are given by (122-7) and (122-3).
This agrees with the current formula for spontaneous dipole transition probability.

123. Compton scattering

The velocity vectors v,, v,, of the two interstates, referred to physically real axes, are
equal and opposite. This is evident from general considerations.2 The contravariant
vector P° from which v, is derived is constant with respect both to ¢, and ¢. But the
probability cannot continue indefinitely to flow in one direction in the CD-frame; and
the other interstate must provide for its return. Thus the analysis exhibits an element
of probability as passing from ¢); to @, with velocity v, in one interstate and returning
to @, with velocity — v, in the other interstate.

It follows that the half-period of the circulation, besides being the mean time of
transition of a particle from one state to the other, is also the mean time of transition
of an oscillator from one interstate to the other. Thus the formula (122-8) is given a
new field of application as determining the transition probability of an oscillator.

Consider an electron with steady momentum p; along the x, axis. This is not a
‘state’, since the distribution (relative to the physical origin) is progressively changing.
We can treat it as an interstate provided that we couple with it a conjugate interstate
in which the electron has momentum —p,; to satisfy the reality conditions the two
interstates must have equal occupation.

For steady circulation the particle momentum vector p, of the oscillator must be
isostatically compensated by a field momentum — p,. The nature of this field momen-
tum will be more fully investigated later; meanwhile we use the well-known result that
the field momentum associated with transitions consists of photons of frequency
v = p/h, or radian frequency w = p,/#, moving in the direction of their momentum p.

Accordingly, the two interstates comprise (¢) an electron of momentum p; and a
photon of momentum —p;, and (b) an electron of momentum —p, and a photon of
momentum p,. When the transition from (b) to (@) occurs we say that the electron has
scattered an incident photon p, backwards in the —x, direction. This case, in which
the motion of the photon is directly reversed, will be called collinear scattering. The
part of the theory of scattering which requires wave mechanics is limited to collinear
scattering, since the formulae for oblique scattering can be derived from it by a

@ We have changed the notation so that v, is the physically real velocity previously denoted by + | vg].

The substitution of Pt for P will not alter | vy|, as determined by (122:7). But the analysis leaves
unsettled the ambiguity of sign; and we have recourse to other considerations in fixing it.

)
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Lorentz transformation. It will be seen that in collinear scattering the momentum

and energy of the system photon+ electron are conserved; and since the conservation

law is invariant for Lorentz transformations, this applies also to oblique scattering.
The wave function of an interstate is

U NP1t/ (123-1)

where 1, is constant and m is the proper mass m, of an electron. Since this is pseudo-
discrete, it represents an assemblage of similar systems. By taking the occupation to
be such that there are two electrons, one in each interstate, to a wave-length ! = 27#/p,,
we obtain a very simple representation of the transitions. By (122-63), disregarding
the factor 137 introduced in the later reduction to the observational system, the time
between transitions is 7 = 1/w = 27/v?w, = 7fijv®m, since m/# in (123-1) corresponds
to 1w, in (122-42). The free path of the electron is v = #fi/mv = w#i/p, = . Thus the
transition or reversal of motion occurs at each half wave-length. We picture two
opposite streams of electrons with an exchange (or collision) occurring at each half
wave-length, so that an individual electron oscillates to and fro over a range } and the
system remains steady. This regular representation refers, of course, to the probability,
and not strictly to the particles themselves.

The foregoing result is exact. We have used the formula p = mw, which is apparently
non-relativistic; but it is to be remembered that a rigid field is present so that Lorentz
formulae do not apply, and further both here and in (122-63) v is the velocity of flow
of probability which may differ from the velocity of the particles by the difference
between wave velocity and group velocity. The relation p = mv makes Jmo? (which is
identified with the kinetic energy in § 122) equal to p%/2m which has been shown (§45)
to be the correct relativistic hamiltonian for standing waves.

In the physical interpretation of our calculations, p, is taken to be the real classical
momentum of the scattering electron; but in (123-1) p, is a real quantum momentum
—4#0/0x;. The explanation is that (123-1) refers to a steady distribution in which the
moving electron is incorporated; and field energy, requisite to maintain the steadiness,
has been added. Asinour example of the star cluster (§ 21), the conversion of a dispersing
into a steady system inverts the energy, or equivalently multiplies the spatial momenta
by 4, thereby changing real classical into real quantum momenta. The condition for
steadiness yields important information. The isostatic compensation of the assemblage
(in so far as it has not already been taken into account in the rest masses of the elec-
trons) is provided by the electromagnetic radiation field, which we have divided into
photons of momentum + p,. In particular, the pressure 73; of the particles must be
compensated by the pressure of the radiation; or, to put it another way, at the boundary
of the assemblage the electrons must be kept from dispersing by the pressure of the
incoming stream of photons. Let o, o7, be the number of electrons and number of
photons in unit volume. For one-dimensional motion the pressure of the electrons is
o,p3/m. For radiation the pressure is the momentum o, p; per unit volume multiplied
by the velocity of light ¢’. We must note that ¢ is specifically the velocity of light,
i.e. of the photons, and not the universal constant ¢ that has been set equal to 1; because
in the rigid coordinates that we are using, the velocity of light is 137¢ in accordance
with (19-7). Equating the two pressures, we have

0,0, = py/13Tm. (123-2)

I7-2
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As a step towards three-dimensional theory we extend the cellular division to the
%, and x, axes; so that the space is divided into cubes of side /;, each cube containing
two electrons, one in each interstate, and therefore o, /o, photons in each interstate.
This implies that the electron oscillates simultaneously and independently with
velocity +wv, = + v, = +v; along each axis—an unrealisable condition which we shall
rectify later. Consider a beam of radiation of frequency corresponding to p, and of
unit cross-section travelling along the x; axis. The probability that a photon is scattered
by a particular electron lying in the track of the beam is the ‘effective cross-section of
the electron’ for scattering. This probability is the product of

(1) the probability I2 that the track of the photon goes through the cell containing
the electron;

(2) the time l/c (measured in the observational system, ¢ = 1) that the photon takes
to go through the cell;

(3) the probability per unit time (measured in the observational system) that the
electron makes a transition. Since the electron travels 3l between transitions the

probability is 11w

R IRETE (123-3)
the reduction factors 2 (on account of current double reckoning) and 137 being the
gsame as in §122; N

(4) a ‘dilution factor’ o, /c.

The dilution factor is required because (123-3) has been calculated for an interstate
or assemblage of interstates containing one photon per electron. This concentration of
photons would give much too high a radiation pressure for equilibrium, and we find
that the steady distribution contains o, /o, of a photon per electron. Thus 1—¢, /o,
of the transitions in (123-3) are due to photons non-existent in our system; and the
transition probability of the electron must be reduced accordingly.

The four factors give a cross-section

v P

=2 .
Ay =11 gz Tok. (123-41)
Since v = p,/m and = 27/ /p,, the result is
4% #2 et
AO = 1372w = 4772—1;2' (123‘4:2)

We have been representing the electron as a combination of three independent
oscillators with wave functions eiPwmtmighi  gipamytml)n - gimszstmii% The true three-
dimensional oscillator has a wave function e{PiTitPuatpsZatmi)fi The distinction is
that the three independent phases #, are in the three-dimensional oscillator replaced
by a single phase #,. In the combination oscillator the components p,, p,, p; are com-
pared separately with the scale, so that there are three independent scale fluctuations,
and three phase dimensions are required; in the three-dimensional oscillator the
resultant of p,, p,, p; is compared with the scale, so that there is only one scale fluctua-
tion and one phase dimension. To introduce three phase dimensions is, of course, a
departure from the convention on which all our previous analysis has been based.
Itinvolves a widening factor (277)3 instead of the factor 27 allowed for in the change over
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from curvature to flat representation. Thus when the natural electron in three dimen-
sions is substituted for the ‘unrealisable condition’ temporarily used to represent it,
there is a redundant factor 472 to be removed from the volume measure. Of the four
factors in (123-41) the last two are found independently of the cellular division; in the
first two I3 is to be replaced by I3/472. The final value of the cross-section for collinear
scattering is A, = etjmd. (123-5)
This agrees with current theory.

If this result is stated in the form that A, is the cross-section for collinear scattering
of radiation of frequency v by an electron with momentum — #v in the direction of the
radiation, all reference to quantum theory is eliminated, and the further development
of the formula for practical application is a straightforward problem of special
relativity theory. Consider radiation of frequency v in a fixed direction scattered by an
electron with arbitrary momentum vector p; within a solid angle 2 in the direction 4.
By the conservation of energy and momentum we can determine the final momentum
vector p; of the electron. We now apply the Lorentz transformation which reduces the
resultant p; 4+ p; to zero. In the new frame (distinguished by an accent) p; = —p;. The
momentum of the radiation is not necessarily in the direction of p7; but the component
in the direction of p} satisfies the conditions for collinear scattering and the transverse
component is unscattered. We can therefore find the cross-section 4 corresponding
to the solid angle df2’. Re-transforming to the original frame we obtain the element
of cross-section 4,df2 associated with the element of solid angle d©2 in any direction of
scattering 6.

It is unnecessary to pursue the calculation here. Having obtained by our theory the
result (123-5) which is the special case of the Klein-Nishina formula for collinear
scattering, agreement in the general case follows automatically if the Klein-Nishina
formula is Lorentz-invariant.

The formula is inaccurate for high energies because the uncertainty of the physical
origin, from which the coordinates of the electron are measured, has been neglected.

124. Transverse self energy of a particie

The rest mass of an object-particle is a mutual energy of interaction of the particle
with all the other particles in the environment. In Chapters 11 to v we have found
three equivalent representations of the interaction, by inertia-gravitation, by exclusion,
and by interchange. Following the ideas of the present chapter, we obtain a more
detailed development of the interchange representation as a steady transition circula-
tion between the state of the object-particle and the various states of the environment
particles. Whichever representation we use, the mutual energies of the object-particle
paired with each environment particle in turn must add up to the mass of the object-
particle, or to twice the mass if single reckoning is used. That is how we have determined
the mass m,, and hence the masses of the elementary particles; so that we are secure
against any failure of this condition. But in current theory the rest masses of particles
areintroduced empirically as self properties; and the first suggestion of a representation
of mass as a mutual property arises in the calculation of the ‘transverse self energy’
of a particle. This name is given to the energy calculated by adding the energies of
transition circulation between the rest state of the particle and all other possible states.
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Thus in current theory the agreement between the transverse self energy and the rest
mass becomes an important test of consistency. The test is not fulfilled.

It is not a long step from the results of §§ 122, 123, where we have found agreement
between current radiation theory and fundamental theory, to the calculation of the
transverse self energy; so that the fallacy of the current calculation must occur near
the end. The expression for the transverse self energy is finally reduced to the integral®

l 5]
W — mfo kdk, (124-1)

k being the energy of the photon emitted or absorbed in the transition between the rest
state and another state, or equivalently the energy-difference of the states. The
divergence is a consequence of assuming an infinite universe. Since W should be equal
to m, (124-1) is actually an equation for m2 giving m = co—which it would be, according
to our formulae, in a universe with N infinite. (Put N = oo in (40-8).)

To rectify (124-1) we first recall that the object-particle is always a top particle;
and the other particles, which form the uranoid or planoid, pack the energy levels
beneath it. We have previously calculated the top energy by exclusion theory; but
the interchange energy, i.e. energy of transition circulation of the top particle with all
the particles beneath, should amount to the same thing. Since m is the difference of
energy between the top state and the bottom state, it is the upper limit of k. We have
therefore to amend (124-1) by putting m instead of infinity for the upper limit. This gives

1 1
- —m. 124-2
o137 (124:2)

It may be noticed that the divisor 27 . 137 also appears in (122-63). It remains to trace
the origin of this factor. ‘

The usual practice of normalising wave functions so as to correspond to one particle
per unit volume in z-space, makes the density of a particle equal to its mass. The
calculation leading to (124-1) is based on the interstate energy tensor, involving the
product of two momentum vectors, and W is strictly a density; m, on the other hand,
is used strictly as the mass in the same calculation. The discrepancy in (124-2) is there-
fore a discrepancy between a density and a mass which were expected to agree. It is
due to the current practice of incorporating neglected factors in the empirical constants.
Writing (124-2) in the form

(2m 1372 W = (27.137)m, (124-3)

we see that the time component of the momentum vector has been reckoned too small
by the factor 27 . 137 since it occurs linearly on the right and quadratically on the left.
These factors do not betray themselves in purely quantal investigations where we
compare masses with masses, or in purely scale-free investigations where we compare
densities with densities; so that there is little opportunity of detecting the discrepancy
until the present part of the theory is reached.

As the discrepancy does not arise in our treatment which takes account of multi-
plicity and other factors at each state, it is scarcely our business to explain the factor
in (124-3). However, its origin is fairly obvious. The factor 137 is supplied when we
make the transformation from time in the observational system to the rigid time

@ Heitler, The Quantum Theory of Radiation, p. 183, equation (23).
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coordinate required by the theoretical equations. The factor 27 is the widening factor
applied to the volume when we introduce a phase dimension. When the independent
phases of the two state wave functions are combined into a single phase of the interstate
wave functions, one phase dimension is eliminated, and it is the corresponding widening
factor that appears in (124-2). The theory is similar to that of the factor 472 resulting
from the elimination of two phase dimensions in §123.

The equation (124-1) was intended to apply only to an electron; but in the amended
form it applies to all particles, being a general relation between the interchange and
exclusion representations of rest mass.a

It is instructive to examine another way of removing the divergence of (124-1),
which connects the interchange representation with the gravitational representation
of energy. We have seen (§ 38) that the current assumption of an infinite universe leads
to neglect of the uncertainty of the origin and of the consequent weight function. The
weight function reduces the number of states of large £ and must therefore be inserted
in (124-1) which is an integral over all possible states. Thus

1 ® w?

- — 1?20 =
1377rmf0 ¢ kil = Torm

The value of w is given in (38-72) as %#/20" = #./N/R,. But in (40-4) % is changed to 7y, -

and in terms of the practical constant # we have

_136272N 5 4

=2 2 %36
10 73 33 S0

2

by (40-7). Factors £, £, 27, 12Z are all familiar in connection with planoidal treatment,
and we may conclude that these (together with a factor £ which might arise in many
ways) have been omitted in the current theory.

2 The detailed calculation of exclusion energy in § 43 applies to the particle of mass my; but the more
rudimentary introduction of exclusion in the form of the ‘principle of the top particle’ in § 16 applies
to any particle, and is sufficient for our purpose here.
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The manuscript ends at this point. The following note, probably written on the last
day of Eddington’s working life, was found with it, and indicates what the continuation
would have been, had he been able to complete his plan. Mr N. B. Slater and
Mr G. L. Clark have examined Eddington’s papers in the hope of finding first drafts
of the missing chapters, but the search has been unsuccessful.

CrmarTER XTI

§125. Symbolic occupation.

§126. Kinstein-Bose particles.

§127. Photons.

§128. Life-time of the mesotron.
CuapTER XIII. EPISTEMOLOGICAL THEORY

(as in Proc. Camb. Phil. Soc., 40, 37, expanded)?
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§137. The principles of fundamental theory.

(Begin with scale, and the various forms in which scale fluctuation has been taken
into account in different parts of the book. Then take the relation between 7}, and Z,°
as the most fundamental starting-point. Survey of multiplicity factors. End with list
of constants whose values are calculated in the book.)

& The title of the article in Proc. Camb. Phil. Soc. was ‘The Evaluation of the Cosmical Number’,
printed as an Appendix on the opposite page.



APPENDIX
THE EVALUATION OF THE COSMICAL NUMBER?

1. The cosmical number N = £.136.2%¢ is most picturesquely described as ‘the
number of protons and electrons in the universe’. This in itself would be a matter of
idle curiosity. But IV has a more general significance as a fundamental constant which
enters into many physical formulae; it determines the ratio of the electrical to the
gravitational forces between particles, the range and magnitude of the non-Coulombian
forces in atomic nuclei, and the cosmical repulsion manifested in the recession of the

nebulae. ItsS special interpretation as the number of particles in the universe arises in
~ the following way. If we consider a distribution of hydrogen in equilibrium at zero
temperature, the presence of the matter produces a curvature of space, and the cur-
vature causes the space to close when the number of particles contained in it reaches
a certain total; this total is N. We cannot say with the same confidence that the
number of particles in the actual universe is precisely N, because the admission of
radiation, complex nuclei, and unsteady conditions takes the problem outside the
range of rigorously developed theory; but to the best of our belief these complications
do not affect the total number of protons and electrons composing the matter of the
universe. ‘

Before calculating their number, it would not be unreasonable to demand a definition
of ‘proton’ and ‘electron’, and adopt for this purpose the mathematical specification
that has been deduced from their observational properties. But the present investiga-
tion is more ambitious. It seeks to determine N directly from the principles of measure-
ment. The proposition is that, as soon as we become obsessed with the idea that the
right way to find out about the universe is to measure things, we are committed to an
analytical conception which implicitly divided the universe into £ .136 .22 particles.
Naturally, in the course of counting the particles, we shall arrive at a mathematical
specification of that which is being counted. From this specification we can determine
the observational properties of the particles, and identify them with protons and
electrons. ‘ ‘ | '

We have to show, not that there are NV particles in the universe, but that anyone who
accepts certain elem}ntary principles of measurement must, if he is consistent, think
there are. A logically \éomplete demonstration, if it is possible, would be extremely
prolix; and it is not the kind of problem I could myself attempt. But I shall try to show
that at each stage the investigation is-being driven by its own momentum—that the
moves leading to a universe of IV particles are forced. Or at least there is so much pres-
sure behind the moves that, when we find the physicist actually does think there are
N particles, there can be no doubt that it is the result of this pressure and not because
of any peculiarity in the external world.

The whole calculation of IV is an essay in the representation of conceptions by
symbolic algebra. It is the conceptions that matter. We have to express in mathematical
symbolism what we think we are doing when we measure things; for if we had no con-
ception of what we were doing, the results of the measurements would not persuade us

& Proc. Camb. Phil. Soc. 40, 37, 1944,
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to believe anything in particular. All our results are derived from the condition that
the conceptual interpretation which we place upon the results of measurement must be
consistent with our conceptual interpretation of the process of measurement. Having
examined critically our conceptual interpretation of the process of measurement, we
have to define symbols with properties that correspond precisely to the conceptions
introduced. : ’

The investigation, although homogeneous in method, falls into two parts; §§2—4
might be described as a prologue to physics, and §§ 611 as an epilogue. The main body
of physics lies up a side-branch indicated in § 5.

A preliminary investigation on these lines has been given in P. & E., Chapter xvi.2a
The result there found (2.136. 225%) js now modified by a factor %, whose source will
appear in equation (21) of this paper. The present paper is the first attempt at a full
investigation.

2. We observe only relative positions and relative velocities; consequently an
observable coordinate or momentum always involves two physical entities. A measure-
ment involves four physical entities, two to furnish the observable that is said to be
measured and two to furnish the comparison observable used as standard. For example,
in a measurement of distance, the extension between two given objects is compared
with the extension between two graduation marks on a standard scale. The usual
alloeation of the measure to two (or even to one) of the four entities concerned in it
should be disregarded for the present; it prejudges the application that will be made of
" the measure in theory—a prejudgement that is often mistaken as, for example, when
a supposed measurement of right ascension of a star is used as a measurement of the
error of the clock. What is measured is something associated with four entities; we shall
call this a measurable. Entities, observables involving two entities, and measurables
involving two observables or four entities, form the rudiments of the structure that we
are going to develop.

The most primitive entity contemplated resembles a geometrical point in that it has
‘no parts and no magnitude’; but instead of ‘position only’-—a far from primitive
attribute—it has existence (or non-existence) only. It has no magnitude, because

magnitude is an attribute of a measurable. That it has no parts means that its existence

is an unanalysable concept, not resolvable into existences of several parts, any of which
can be conceived to exist without the others. We are not here referring to any meta-

physical or absolute significance of existence—whether the entity exists in the sense in’

which I exist. All the concepts which we shall employ are structural concepts (P.P.8S.
pp. 144, 162); and the question is only whether the entity exists (or, more simply, is)
in the structure contemplated. The symbol which we employ to represent the existence-
attribute of an entity must therefore be such that its meaning only becomes definite
when it is conjoined with another symbol representing the structure contemplated.
This reduction of a symbol to an interpretable form by association with another symbol
is expressed mathematically as a reduction to an eigenvalue. The kind of symbol

8 References to the author’s other publications ave: P. & K., Relativity Theory of Protons and Electrons
(Cambridge, 1936); P.P.S., The Philosophy of Physical Science (Cambridge, 1939); D., The Combination
of Relativity Theory and Quantum Theory, a memoir published by the Dublin Institute of Advanced
Studies, Communications, Series A, No. 2. [Editorial note: For the convenience of those readers of the
present volume who do not possess D., a note regarding it is inserted at the end of this Appendix.]
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needed to represent the existence-attribute can be described as a ‘yes-no symbol’.
Distinguishing entities by suffixes, the existence symbol J, of the rth entity has two,
and only two, eigenvalues, namely a yes-eigenvalue a,; and a no-eigenvalue a,, Its
characteristic equation is therefore

(fo = 1) (J, — tyg) = O, (1)

It follows from (1) that J, —a, is an eigensymbol of J, corresponding to the yes-eigen-
value a,,; 50 that the entity exists in a structure represented by J,—a,,. Since this is
formally the simplest structure in which the entity exists, we adopt J,—a,,as a symbolic
representation of the entity itself.

A fuller justification of this symbolism is as follows. Qur mode of acquaintance
through sense organs with a world, common to many human minds and therefore not
contained within any individual human mind, is such that knowledge of it is neces-
sarily limited to knowledge of structure. Our only means of deseribing abstract struc-
ture (that which possesses the structure being unknowable) is provided by the methods
of symbolic algebra; these define a structural pattern by the interrelations of a closed
group of symbolic operations (P.P.S. Chapter 1x). As elements of such a structure,
entities and their existence-attributes must be represented by symbols. The self
properties of any symbol—those definable without reference to other symbols of the
structure—are contained in its characteristic equation. But in this connexion the field
of numbers, which supplies the coefficients in the characteristic equation, must be
counted as symbols of the structure; because it is part of the symbolic method to replace
symbols by ordinary numbers when they behave as ordinary numbers with respect to
all the symbolic operations contemplated, just as multiples of the unit matrix may be,
and commonly are, replaced by ordinary numbers in matrix calculus. Thus the only
genuine self property of J, postulated in (1) is the degree 2 of its characteristic equation,
or equivalently the number 2 of its eigenvalues. It was necessary to choose for the
existence-attribute a symbol with self properties which correspond to our conception
of the attribute as a choice of two alternatives, existence or non-existence. The only
possible correspondence is that the characteristic equation shall be a quadratic offering
a choice of two roots.

The symbol J, by itself represents the offer of a choice. It is a feature of modern
theoretical physics that we are in no hurry to decide the choice. If the entity is one of
those coneerned in a measurement that has actually been made, J,. must, of course,
reduce to the yes-eigenvalue. But in the theoretical systematisation of physical know-
ledge we often introduce intermediary measurables, which are combined 2 or transformed
into other measurables before any question of actual measurement arises. For inter-
mediary measurables it is not necessary that J shall reduce to an eigenvalue in the
structure contemplated; the entity is then said to have partial existence in the structure,

Partial existence is usually explained as ‘probability of existence’; but whether the
explanation clarifies or obscures its nature may be questioned. In science, ‘probability’
most commonly oceurs in connexion with statistical description, and is then an ordinary
number between 0 and 1. Numerical probability applies to a statistical individual, or
unidentified member of a large assemblage. But as applied to a single individual or
event, which affords no scope for statistical interpretation, all we can say about it is

3 The most common kind of combination is ‘averaging’. \



268 Fundamental Theory

that it is a non-numerical concept with two numerical limits 1 and 0 which have
definite meaning. This comes to the same thing as saying that it is a yes-no symbol with
eigenvalues 1 and 0.

We have referred to intermediary measurables which are not supposed to be actually
measured. It has often seemed illogical that, although physicists are continually
stressing the importance of distinguishing between observablesand unobservables, they
are not over-scrupulous in postulating observations of a highly impracticable kind. The
inconsistency is removed if we recognise that the terms ¢ observable’ and ‘measurable’
refer to structure. We appeal to actual observation and measurement to determine the
structure that an observable or measurable must have; but thereafter anything having
the defined structure is classed as observable or measurable, without implying that
appliances for observing or measuring it could be designed. The unpardonable in-
consistency is to treat as a measurable something that has not the structure of a
measurable.

3. The most primitive measurable is provided by four entities whose existence-
attributes are independent. It will not exist unless all four entities exist. It has there-
fore an existence symbol of the form M = J,J.J,J,, the multiplication being understood
t0 be commutative (outer or ‘direct’ multiplication). This has 16 eigenvalues, of which
Gy gy Oy O,y 18 the yes-eigenvalue and the other 15 are no-eigenvalues. Thus the
characteristic feature of a measurable is that it has 15 different ways of not existing.

The four entities will provide a variety of things to measure, and the one existence _
symbol M applies to them all collectively. The measures are therefore to be regarded
as belonging to one measurable whose existence-attribute is represented by M. We
shall call this a tensor ‘measurable; and the array of measures constitutes its tensor
measure. We shall be concerned throughout with tensor measurables and tensor
measures.

We have found that the entity exists in J,—a,, In the same way we find that the
measurable exists in

= (o= o) (J5 = @g0) (J— tyo) (Ju— @uo)> 2

and, since this is analytically the simplest expression in which the measurable exists,
we adopt M* as the symbolic representation of the measurable itself. M’, like M, has
16 eigenvalues. The measurable is thus represented as the outer product of the four
entities involved in it. A similar rule applies to any system composed of conceptually
independent parts, so that its existence is contingent on the exercise of all its parts;
it is represented symbolically as the product of its parts. This has two very general
consequences. First, the conception of a system as the product (not the sum) of its
parts lends itself to a probability interpretation, since probabilities are multiplieative.
Secondly, all those characteristics, whose additive character has led to th;)-/ familiar
conception of a system as the sum of its parts, must be represented as exponents of
exponentials, so that they may eombine by addition when the exponentials are com-
bined by multiplication. This is a well-known principle of wave mechanics.

Physical science may be defined as ‘the systematisation of knowledge obtained by
measurement’. It is a convention that this knowledge shall be formulated as a descrip-
tion of a world-—called the ‘physical universe’. We now apply the results that have
been obtained to the physical universe. Since the data are measures, the measurable
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forms the natural starting-point for the theory. Having satisfied ourselves that a
measurable is represented by a symbol with 16 eigenvalues, we now drop the pre-
liminary scaffolding; and any entities introduced in the physical scheme will be
defined in terms of measurables, instead of vice versa. The structure repeats itself
indefinitely; that is to say, four non-primitive entities will furnish non-primitive
measurables, which in turn may be used to define further entities. This cyclic return of
structure into itself is characteristic of the mathematical definition of structure by
closed groups and algebras. The measurables in successive cycles are always symbols
with 16 eigenvalues; the only difference between them is in the undefined significance
of the unit of eigenvalue. ' _

We have assumed that the measure depends only on the four entities concerned in it.
This is by no means self-evident. The four entities do not shout their measure at us.
We shall later examine the practice of measurement more closely to see whether it

~postulates the existence of something, which we may call Z, besides the four entities
(§9). It is almost always assumed, and to a very high approximation it is true, that
whatever else is required to make the measurement possible exists unconditionally
in the actual universe; its non-existence could only come about by one of those fan-
tastically improbable coincidences which are formally possible in a statistical assem-
blage, but for all practical purposes are ignored. The non-existence of Z is therefore
something that the pﬁysicist refuses to conceive; so that, although Z is necessary to the
measure, this does not increase the number of ways (fifteen) in which the measurable
might not exist. It happens that the calculation of V is the one investigation for which
this approximation is inadequate. This places us in a difficulty as regards nomen-
clature. To mark the special character of the calculation of N, I have described itin§1
as an epilogue to physics. I shall therefore use the term ‘measurable’, in accordance
with the basal approximation of physics, for the concept associated solely with the
four entities; but in the epilogue it will be necessary to drop the approximation and
introduce the ‘true measurable’—a combination of the measurable and Z—to which
the measure properly belongs. This will have more than 16 eigenvalues; or we may put -
it that the higher magnification used in the epilogue shows a fine structure in each of
the original 16 eigenvalues.

The data of physics are measures; but we can make nothing of a mere collection of
measures without any note of the objects and circumstances to which they refer. The
crux of the problem is to supply ‘connectivity’ to the measures; so that in the theoretical
treatment there may be an equivalent for that part of the procedure of measurement which
consists 1n noting the objecis and circumstances to which the measures relate.

In the mathematical specification we indicate distinctions between different measur-
ables and between different measures by tagging suffixes to them; so that we deal with
a set of measurables M, and a set of measures X,. But the numbering of the different
components of a structure is useless unless it is accompanied by a key-plan. Thus in
using M,, X there is an implied promise to supply a key-plan—to define how the
distinctioh referred to in the suffixes is made.# This sets before us a definite problem,
namely, to discover a structure of measures and measurables which is such that this

a The difficulty of distinguishing measures is less obvious than the difficulty of distinguishing measur-
ables. In a scalar measure there is no difficulty, because the measure-number is the distinction. But a
tensor measure is an array of measure-numbers; and we have to define the distinction between different
permutations of the numbers in the array, which are, of course, entirely different measures.
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promise can be fulfilled. This will be called ‘the structure problem It appears to have
a unique solution, bearing in mind the condition that the measurables must have just
16 eigenvalues.

The position is that we cannot make a beginning in structural theory without run-
ning into definitionary debt. We may not run up a debt greater than we can pay off.
After discharging the initial debt, we pay as we go. So long as we are in debt our moves
are forced (§1) by the necessity of extricating ourselves. At the end of the structure-
problem we stand all square with everything structurally defined; and thereafter we
should be careful to define new quantities or distinctions as we introduce them by
relating them to the quantities which the structure problem has defined.

4. A measurable has a unique measure, but any number of measurables may have
the same measure X . There are two ways of regarding the relation of measure and
measurable: (1) the measure is ‘carried’ by the measurable; (2) the measurable
‘occupies’ the measure. We have hitherto taken the first view. Following now the
second view, we can, without particularising the distinction between different measur-
ables, state how many measurables occupy X,. We introduce therefore an occupation
symbol K, such that the eigenvalue of K, is the number of measurables occupying X .
Just as the existence symbol M, has in the structure a correlative M, representing
that which exists, so the occupation symbol K has a correlative K, called the occupa-
tion operand, representing that which occupies. Initially, K, gives a purely quantitative
representation of the occupation, namely, 1,2, 3, ... measurables; or, if K} is not an
eigensymbol of K, it corresponds to a symbolic quantity of occupation.

By the definition of K, its eigenvalues are the positive integers (including 0). In the
study of small systems artificially separated from the rest of the universe, an enumera-
tion of the number of carriers of each particular measure is appropriate; but this
application of K, comes much later in physical theory, after we have developed
analytical machinery for dividing the universe into semi-independent systems. At
present we can only treat the universe as a whole; and an enumeration of the particles
throughout the universe which have a measure X, is scarcely the right way to approach
‘the systematisation of knowledge obtained by measurement’. What more nearly
concerns our knowledge is the change in the number, brought about by the phenomena
we investigate. We therefore modify the definition of K, so that its eigenvalue is the
excess of occupation above a large, but at present unstated, integer 3n. The eigenvalues
of K are then the positive and negative integers, or equivalently the roots of sin ﬂk 0.
The cha,ractenstm equation of the symbols K is accordingly

sinmK = 0. ' (3)
More strictly, this is the limiting form of the characteristic equation when the possible
eigenvalues range from — in to in, and n—oo.

According to the rule tha,t a structure is represented as the product of 1ts parts,
if K represents occupation by one excess measurable, (K ;)™ will represent occupation
by m excess measurables. Since

, 0 _
(i = 5o gy (K™ (4)

o/o(log K7) is a symbol which, in conjunction with an excess occupation operand,
reduces to an eigenvalue m equal to the number of measurables forming the excess
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occupation. But this is the definition of the symbol K; so that K = 9/0(log K;). Hence,
putting K = e®, - (5)
we have ' K = —19/06. . (6)

Of course 6, like K3, is a symbol (not a number); and we shall presently find that it has
a property which would be impossible for a number.
For any function f(6),

&m0 (6 — =010 f(0) = 2§ sinwKf(6) = 0,
by (3); so that, by Taylor’s theorem,
JfO+m)—f(@—m) = 0. (7)

Thus 6 is a symbol of such a nature that 6+ is indistingmishable from 8 —7. Such
symbols have a familiar representation as geometrical angles. This is the first suggestion
of a spatial picture of any part of the structure of the physical universe. By adopting
it we make no ultimate difference, because geometrical concepts, like other concepts,
are defined by symbolic algebra; but we obtain a ready-made vocabulary, and so get
a respite from the strain of inventing our language as we proceed. By representing 6
more particularly as a rotation angle we are able to apply the theory of rotation groups.

By (5) the occupation operand corresponding to K = 1is e¥. Since this is a symbolic
representation of whatever is occupying the measure (in this case just one measurable)
€% is the representation of an excess measurable. But since we have been considering
only the quantitative aspect of the occupation, € does not as it stands show any
distinction between different measurables. If, however, we replace it by ¢®, where
8 is a symbol representing a rotation angle 8 in a particular plane, we introduce a quali-
tative distinetion. This distinction can be structurally defined by means of a rotation
group. The group is unique, because ¢®, being a measurable, has 16 eigenvalues.

We have therefore to pick out from the known rotation groups the one in which the
rotations are symbols with 16 eigenvalues. This is the group which defines the double
frame, or EF-frame, treated in P. & K. Chapter x. The matrices with 16 rows and
columuns form the same group. Thus ¢®? and 8 are ZF-numbers, or equivalently 16-fold
matrices.

It may be remarked that, if we assume that measurables can be represented by
matrices, it follows directly from (2) that the matrices are 16-fold. For the J,, having
2 eigenvalues, will be represented by 2-fold matrices, and the measurable is an outer
product of four of them. But this short cut, besides involving an assumption, misses
points that will be needed in the subsequent developments.

The full representation ¢ of a measurable is reduced to the merely quantitative
representation e by associating an eigensymbol with it. In general the same eigen-
symbol will reduce a number of EF-symbols to eigenvalues simultaneously. It is
therefore not necessary that 0 should be a simple rotation in one plane of the £ F-frame;
it may be the sum of rotations in different planes, provided that the plane-symbols
have a common eigensymbol. The general form of 8 is

0 =JEF0, (8)

summed over a subset of commuting ZF-symbols; for it is always possible to find a
common eigensymbol of a set of commuting matrices. Planes whose symbols commute
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are said to be antiperpendicular; so that 8 is composed of components in antiperpen-
dicular planes.
The eigenvalues of the EF-symbols are + 1; so that, in conjunction with an eigen-
symbol, (8) reduces to - :
ymbol, (8) 0=25(20,). 9)

But there are relations between the simultaneous eigenvalues of the EF,, so that the
combination of signs in (9) is not entirely arbitrary.

5. Ameasure X, is an array of numbers 2,4, %, .... We commonly represent such an
array as a symbolic sum X, = 24z, , where the symbols 4, distinguish the places in
the array. But unless the 4, are structurally defined, i.e. connected with symbols
whose group relations form a defined structure, we lack the ‘key-plan’ for interpreting
the notation. At the present stage the most general number array that is structurally
defined is an FF-number. We must therefore take the X, to be EF-numbers.

Measures, unlike measurables, are not safeguarded against extreme complexity by
a limitation of the number of their eigenvalues. (A measure is not to be thought of as
existent or non-existent; the worst that can happen to it is to be totally unocecupied.)
Thus the measures concerned in the structure problem, which are ZF-numbers, may
be a selection from a larger class of measures—a selection forced on us by the conditions
of the structure problem. The point is that, when in § 4 we enumerated the measurables
oceupying X, without explaining how X, is distingunished from other measures, we
contracted a definitionary debt which makes the whole investigation meaningless,
unless it takes the form of a cycle supplying the missing definition; so that our results
apply to the occupation of measures selected by the condition that their distinction
can be defined by those results.2

It is worth while to consider this selection of measures from the physical point of
view. Every comparison of two comparable observables is a measure, and has a right
to representation in the physical universe which embodies all knowledge obtained by
measurement. But in scientific investigation we do not go about casually comparing
any two observables we come across. We have gradually discovered which of many
possible measurements provide a basis for systematisation and unification; and it is
these basal measures that have received recognised names. It is therefore not a
blemish on the present investigation that it does not immediately confront us with the
whole disordered mass of possible measures, but selects a set of basal measures. We
shall see immediately that physical science, in its search for systematisation, had already
arrived at just the same selection.

The EF-numbers are space tensors of the second rank (P. & K. §10-2).2. It is well
known that, in the systematisation of molar physics provided by relativity theory, the
fundamental measures (g,,,7,,) are tensors of the second rank. The E¥-frame (with
its characteristic number 136) is also the basis of the author’s development of rela-
tivistic quantum theoryin P. & E. and D.; the particle theory begins with the standard
carrier, which is the carrier of an unspecialised element of energy tensor and nothing

a The first round of a structural cycle is always, so to speak, a trial run. In later rounds all quantities
are defined cyclically in terms of one another, so that the cycle can be continned forwards or backwards
indefinitely.

b In the classification of rank here adopted, two antisymmetrical suffixes count as one; so that a

6-vector (like & 4-vector) is of the first rank, and the Riemann.Christoffel tensor (like the energy tensor)
is of the second rank.
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more (D. §11). The ‘standard carrier’ and its ‘complete energy tensor’ are in fact the
names under which the structural concepts of a measurable and its second-rank tensor
measure pass into the main parts of physics.

Thus when the structure theory reaches the EF-frame it enters territory already
widely explored, and we pass straight on to relativity theory and relativistic quantum
theory. It is shown in D. that all the fundamental physical constants except the cosmical
number can be derived, and that the values agree with observation. There has been
great improvement in the experimental data in the last few years, and the observational
test is now very stringent. For the cosmical number we must return to the structure
problem. The EF-frame enables us to distinguish measures, but we have yet to show
explicitly how measurables with the same measure are distinguished from one
another.

It may be asked, why should we trouble to distinguish measurables (now identified
as standard particles) from one another, seeing that it is a fundamental tenet of
quantum. theory that elementary particles have no distinctive identity? But, as we
pointed out earlier, it is the conception that matters—not whether particles are dis-
tinguishable, but whether they are conceived as distinct. Clearly, the physicist con-
ceives electrons as distinct, otherwise he would not talk about exchanging them; if
they are continually exchanging identity, they must be conceived as having an identity
to exchange. We are not concerned with any metaphysical conception of identity.
Whatever it is that is exchanged—whether it is called ‘identity’ or merely a ‘suffix’
—has to have a structural equivalent.

But the fundamental reason for distingunishing measurables is that which has been
referred to in § 3, namely to provide connectivity. An actual measure without note of
the object and circumstances is useless scientifically. It has to be treated as a numbered
part to be fitted into a numbered place in the key-plan of a complicated structure;
and we must continue the same system of attachment of measures to particular
measurables in the analytical theory. The structure of the universe has therefore to be
formulated in such a way that this association of measures with structurally identi-
fiable measures is latent in it. We say ‘latent’, because fundamental physics rarely
brings it to light. That is because fundamental physics is coneerned with generalisations,
which are true independently of particular identifications; but in that respect funda-
mental physics is not typical of physical science as a whole.

6. We take advantage of the connexion of the structure theory with the ordinary
developments of physiecs (made through the EF-frame) to introduce less abstract
terminology. The basal measure, which forms an EF-number, is the energy tensor.
More precisely, it is the ‘complete energy tensor’ with 136 independent components,
which includes the ordinary energy tensor as well as spin components and other conse-
quential variates. These components are all classed as generalised momenta. It is in
keeping with the uncertainty principle that no coordinates are included; for if
the momenta are exact, the coordinates are entirely uncertain, i.e. unmeasurable.
Before coordinates can be introduced we require a conception not yet provided for,
namely, a measurable with uncertain measure. This conception will arise presently;
but it is not necessary for our present purpose to pursue the developments to which
it leads.

EFT 18
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A ‘conceptual carrier of variates’ is generally called a particle. ‘Particle’ is a wider
term than ‘measurable’; but, since a measurable is one kind of particle, we shall often

refer to it as a particle. '
 The measure of a measurable is a definite characteristic of it; so that the complete
specification ¢® of a measurable must contain all the data necessary for determining
the array of numbers which forms its measure. We have therefore to consider how the
measure is to be extracted from the symbolic specification of the measurable. Since
the measure is an FF-number, the natural suggestion is to identify it either with 6
or ¢ which are ZF-numbers. But this implies that the measurable is completely
defined by the measure which it occupies, and is contrary to the principle that there
must be a latent distinction between the various measurables which may happen to
have the same measure. Thus the measure X must be extracted from 8, but there must
be something left over which is included in 8 but not in X. An important clue to the
nature of that which is left over is provided by the consideration that the distinction
between the measurables occupying X must be discrete. Two energy tensors may be
nearly the same, but we cannot speak of measuring the energy tensors of two particles
which are ‘nearly the same’; conceptually, if two particles are different at all, they are
altogether different—there are no degrees of difference of identity. In the structure
that we have developed the only basis for a discrete distinction is provided by the sign
ambiguities in (9); and this mdlcates definitely the direction in which our ana,lysm
must proceed.

Before treating the ZF-frame it is convenient to examine the correspondmg problem
in a simple E-frame, using analogues of measures and measurables. The ‘measurable’
is then an Z-number and can be represented by a fourfold matrix. By suitable orienta-
tion of the axes in the E-frame, any E-number whose four elgenvalues are all different
can be reduced to the antitetradic form

10 = Eﬂv01+E6192+EAp03+E16947 (10)

i, v, o, 7, A, p being different suffixes.2 The four terms in (10) commute; so that 8 has
components in four antiperpendicular planes.

The measure X is also an E-number or fourfold matrix. Denoting the matrix by
X, 4, we distinguish especially the measures for which X, is the product of two vectors
(wave vectors) ¥, Xp; these will be called pure measures. Purity is invariant for tensor
transformations; and it can be described independently of matrix representation, the
condition being that, if the F-number is normalised so as to make its quarterspur
(i.e. its algebraic component H sx,5) equal to %, it becomes idempotent. It has been
shown (P. & E. §5-5) that by suitable orientation of axes a normalised pure measure
can be reduced to the antitetradic form

X = —I?’( ;w +E’ilp+E16): (11)

and further that the wave vector factors i, x are right and left exgensvmbols of
B,y Byry B ps Erg.

wr o>
& The corresponding theorem in matrix algebra is that any matrix of which the characteristic roots are
distinct can be transformed into & diagonal matrix. The limitation to distinet eigenvalues can be dis-
regarded in the physical application, since exact coalescence is a limiting conception which could be
approached but never actually reached in natural conditions.
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Provisionally we shall suppose that the basal measure is a pure measure, and that
its planes agree with those of the measurable which carries it. This assumption will
be justified later. It can then be defined (apart from a possible numerical factor) as
the outer product of the right and left eigenvectors of 8. In conjunction with ¥ or ¥

or both, (10) reduces to ,
0= +0,+0,+0,+6, (12)

the eigenvalues of the Z-symbols being + 3.

By (6), 0 is (according to the usual nomenclature) a generalised coordinate con-
jugate to the generalised momentum K. We therefore call 8 the phase coordinate, or
simply the phase. (K can be identified as the scale momentum.) We call 4,, 0,, 8,, 0,
the phase subcoordinates. Adopting the positive signs in (12), the wave front or locus
of constant phase is a three-dimensional flat in the subcoordinate system, namely
0, + 05+ 03+ 6, = constant. This gives the familiar picture of ¢*® as a system of plane
periodic waves (0 + 7 being indistinguishable from 6 — 7). The waves, however, are in
a non-Pythagorean space, the axes being antiperpendicular (commuting) instead of
perpendicular (anticommuting).

A symbol E,, represents not only a plane but a positive direction of rotation in the
plane; and there is an alternative symbol E,, (= — E ) to represent the plane with an
opposite direction of rotation. (For X, the alternatives are +4.) Thus the same set of
four antiperpendicular planes has 16 different symbolic representations; these will be
called reflexions. Different reflexions correspond to different choices of the positive
directions of the four subcoordinate axes. We have written down (10) and (11) as the
relation between measure and measurable; but, if the relation is simply that the planes
agree, this is too precise, for the plane-symbols in (10) may be any reflexion of the four
plane-symbols in (11). Thus when the components of the measure are given, the
measurable may be represented by any one of 16 wave systems resulting from the
different combinations of sign in (12).2 _

The set of 16 reflexions will be called the grid, the number 16 being the grid constant.
Reflexions will be distinguished by a grid-number g, which may conveniently be taken
as the number on the binary scale formed by writing 1 or 0 for 4+ and — in the sign
combination.

Apart from a numerical factor, a pure measure X, can be transformed into any other
pure measure X, by a relativity rotation in the E-frame. To preserve agreement of the
planes, the subcoordinate space, carrying the grid with it, must be rotated along with
the measure. Thus it is possible to identify corresponding grid-numbers in different
measures. The grid-number of a measurable therefore forms an identifying characteristic
which s independent of the measure. This enables us to introduce the concept (mentioned
earlier) of a measurable with uncertain measure. An existent measurable, distinguished
by a grid-number, can be supposed to occupy partially two or more measures, the
occupation factors being symbols whose sum is unity.

a This does not follow directly from (12), because in (12) as originally derived the sign ambiguities are
not all independent, and only 8 combinations are admissible. The 16-fold ambiguity arises at an earlier
stage, as explained above. In the simple E-frame a complication occurs, because the reality conditions
are such. that the real planes of the measure correspond to imaginary planes of the measurable, and vice
versa. Bub since this complication doeg not oceur in the corresponding analysis of the EF-frame (to
which the analysis of the E-frame is merely a preliminary) it does not really concern us—except as an
indication that the simple frame is inadequate for representing true measurables.

18-2
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We now proceed to justify our provisional assumption that the basal measure is
pure. An impure measure is reducible to the form X = & ,x, + E,, 25+ B, ,23+ Fy4,.
Every constituent of this expression which is not an absolute constant must be deter-
mined by the measurable ¢®, The four planes of X and 6 must agree, since 8 does not
define any other set of four antiperpendicular planes. The coefficients z, if they are not-
equal to an absolute constant, must be determined by the components 6,; but, on the
other hand, the connexion must not be such that the 6, are completely determined by
the z,. Evidently there is no relativistically invariant way of satisfying this; and
accordingly the four x, must be equal to the same absolute constant. This condition
makes X pure. We notice that the scalar magnitude of the basal measure has to be an
absolute constant, differences of measure being limited to differences of orientation in
the B-frame. In ordinary language the discrete measurables which occupy the basal
measures are all similar partficles. These similar particles are the ‘standard carriers’,
which form the starting-point of the relativistic quantum theory developed in D2

To summarise the argument: we have to connect two E-numbers, a measurable and
a measure, in such a way that the measurable completely determines the measure, but
the measure does not completely determine the measurable; and further that, when
the measure is given, the indeterminacy of the measurable (or part of the indeter-
minacy) consists of a discrete set of alternatives. These conditions are sufficient to show
" that the measure is a pure E-number, and that the set of alternatives is a grid
associated with the antiperpendicular planes of the pure E-number.

7. The foregoing treatment applies with very little modification to the double frame.
The general EF-number, or 16-fold matrix, is (if the eigenvalues are distinet) redumble
by smtable choice of axes in the EF-frame to the form

6 =2E F0, (f=12734), _—13)
where E,, E,, E,, E, and F,, F,, F,, F; are antitetrads. The 16 symbols in (13)'/éommute
with one another, and define 16 antiperpendicular planes. They have common right
and left eigensymbols (double wave vectors) whose outer product gives a pure EF-
number X. When X is normalised so as to be idempotent, it becomes X = — 2 E, F,.
By our previous argument this must be the measure of ¢®. The coefficient ¢ (which, if
attended to, gives trouble in the simple frame) does not occur in the double frame. The
only other difference is that there are now 16 phase subcoordinates, and the grid consists /
of 216 reflexions. g

For later use we require the corresponding results for a quadruple frame or EF GH-
frame. There are then 256 antiperpendicular planes represented by E ¥ G, Hy
{a,,7,0 = 1,2,38,4), formed by combining sets of four commuting symbols in ea.oh of
the four constituent frames. There are accordingly 256 phase subcoordinates, and the
grid consists of 2258 reflexions.

We shall treat the grid constant as extremely large. This is scarcely true of the
constant 26 of the double grid; but ultimately it is the quadruple grid, with constant
2256 that has a physical application.

8. The next step is dictated by the fact that our results from § 4 onwards refer to
excess measurables; in particular the measurables that possess a distinctive grid number
are excess measurables. From the observational point of view this is the right starting-

* This refors to the corresponding particles in the double frame.
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point; for any small system that we measure is contemplated as an excess superposed
on a constant environment which constitutes the rest of the universe. I have called
the idealised wuniverse, which forms the standard environment of any microscopic
system, the uranoid (by analogy with the geoid in geodesy). Of course, no mathe-
matical formula ever professes to determine what a system will actually do; it states
what the system would do under certain conditions, some of which may be stated
explicitly and others are assumed implicitly. The implicit conditions include the
specification of the standard environment or uranoid on which the system is super-
posed. The measurables of the standard environment contribute the standard occupa-
tion of the measure X; and the measurables that we are particularly interested in—
those of the object-system inserted in the environment—accordingly appear as excess
measurables additional to the standard occupation.

Accordingly the excess particle is the practical starting-point. But one cannot build
a universe in which every particle simultaneously is an excess particle. On the other
hand, the rest of the universe is supposed to be formed of particles similar to those
which form the excess object-system. Our problem now is to introduce particles which,

although not necessarily associated with excess oecupation, have characteristics
~ (phase and grid-number) similar to those of excess particles. These are called Einstein-
Bose (E.B.) particles.

The wave system ¢*® represents one excess measurable. Taking another elgenva,lue
k of K, we obtain a wave system e**® representing %k excess measurables. The whole
excess is represented by one wave system in which £ measurables are fused together,
so that one phase @ and one grid-number g apply to them collectively. They are there-
fore to be regarded as forming one measurable of multiplicity, or weight, . The point
to be noticed is that there is never more than one phase associated with the same grid-
number, multiple occupation being indicated by the wave-length and not by the
coexistence of several phases. The same condition must be supposed to apply to E.B.
particles, since they are in-all respects similar to excess particles. If this condition were
not imposed, we should have two different ways of representmg multiple occupation,
and a great deal of confusion would ensue.

We are concerned with three kinds of distinction, ¢ specifying the measure, £ the
quantitative occupation, and g the qualitative occupation. All three are combined in
the ‘state’ S, ,;. The term ‘state’ is used for any combination of distinctions or variates,
and the term ‘particle’ for a carrier of the combination or an occupant of the state.
This gives a fluidity of description, which is needed in transferring the properties of
excess particles to E.B. particles. The latter are described as occupants of states
8,4z Or equivalently as k-occupants of states Sy,. We introduce an ocoupation symbol
Jg% Whose eigenvalue is the number of k-occupants of 8. The only eigenvalues of
Joqr are 1 and 0; for we have seen that two £-occupants with the same g would fuse into
‘a 2k-occupant. The total occupation of the measure X, is then -

2 g kJ;zgk’ (14)
and K, is the excess of this above a certain standard occupation.

For definiteness we take a uranoid composed of particles of weight 1, and therefore
drop the suffix k.2 Then, if » ig the grid constant, and nz the standard occupation,

K, =2,J,—nx = 2,(J,—x). (15)

g¥q9 9\Yag
s This means in effect that we treat a universe composed of hydrogen (as remarked in § 1).
. 18-3
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If « = %, the eigenvalues of J,,—x are + %, and the eigenvalues of K, are the integers
from — n to 4n. The characteristic equation of K is therefore

r=in 2 .
K1l (1—1;-) =0, (16)
which converges to sinwK = 0 when 7 is large. Since this does not hold if = differs

appreciably from 4, we see that, in order that (15) may be consistent with (3), z— 4 as
n—>o0. In our application » is extremely large; and we therefore have ‘

K,=2Y, Y=J-% (17)

gtag

We distinguish Y as the E.B. occupation factor, and J as the F.D. (Fermi-Dirac)
occupation factor. The E.B. occupation of S, is measured from an initial oceupation %,
and the F.D. oceupation is measured from an initial occupation zero. We can regard g
as a major characteristic and g as a minor characteristic of the state S,,. If minor
characteristics are ignored, the separate states S,, combine into a state S, (identical
with the measure X ) of multiplicity », whose occupationis K, = 2, ¥, . It Wlﬂ be seen
that, when E.B. occupation and corresponding £.B. particles are used, the concept of
‘excess’ no longer appears explicitly. An interesting point is that, when the occupation
factor K, of the multiple state reduces to an eigenvalue, so that the occupation is
represented by 9, it has to choose a reflexion for its wave system and so acquires a
grid-number ¢’. According to the usual outlook, the distinction g indicates what we
loosely call the ‘individuality’ of the particle. We create a particle of composite in-
dividuality by combining other particles; but this immediately acquires a simple
individuality g’ of its own, homologous with, but not derived from, the individualities
of the particles from which it was formed. In fact it may well happen that the original
pa,rtlcle with grid-number g’ was non-existent (., = 0).

The distinction between particles has been based on the three characteristics g, g, k.
There is a fourth characteristic & carried by the particle; but this does not provide any
additional means of distinction; because, although it may have different values, there
cannot exist any other particle with the same g discriminated by a different value of 4.
There is no way of defining structurally a common zero-point from which the phases
belonging to different reflexions are reckoned; as we ordinarily say, the phases are
tncoherent. From the point of view of wave mechanics this is the most practical con-
sequence of the grid distinction; since it is a fundamental principle in current theory that
wave functions associated with different particles have incoherent phase; whereas wave
functions associated with the same particle (as in a wave-packet) have coherent phase.

Since there is one phase associated with each grid-number, an enumerstion of the
particles as distinguished in current theory by incoherent phase, should agree with our
enumeration of the particles distinguished by grid-numbers,

9, We have treated a measure as a number, associated with two observables, that
we somehow become aware of. But the interpretation of measurement introduces an
additional eonception, namely graduation. If we play about with a pin and a metre
standard, we do not become aware of any number in particular unless the standard has
been graduated, or unless we use a process of displacement which we interpret as
adding pin-extensions. Since length (a measure) is not assigned to the pin till the pro-
cedure is completed, we have to use a different term ‘extension’ in describing the
processes which lead up to the determination of length. Moreover, the léngth is a
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property of the measurable formed by the pin and standard, whereas the property of
extension is supposed to reside in the pin alone or standard alone. Extension may be
called an observe, because it is related to an observable in the same way that a measure
is related to a measurable. The length that we determine is interpreted conceptually
as the ratio of the extension of the pin to the extension of the standard.

Thus the scientific interpretation of measurement introduces two new postulates:
(1) the measure is the ratio of two observes, and (2) there is an additivity of observes
which is the basis of graduation. But if observes can be added and divided, they form
a field homologous with numbers. Thus, although w@ have carefully distinguished
observes from measures (extensions from lengths), we' find ourselves attributing to
observes properties scarcely distinguishable from those of measures. This often leads
to confusion, as when we catch ourselves saying ‘the length of an object is the ratio
of its length to that of the standard’.

In accordance with our principle that it is the conception that matters, we emphasise
that these postulates refer to the conceptual interpretation of measurement. Scientific
measurement is a process which has evolved, and is still evolving; and its evolution is
guided by our conceptual interpretation of it. It is not a practical process hit on by
accident whose meaning we have to discover; we first make up our minds what we think
a measurement ought to mean, and then design a procedure which will yield a ‘good’
measurement, i.e. a measurement to which we can without inconsistency assign that
meaning. '

The fact is that, although measurement is primarily a process involving four entities,
the conceptual interpretation of measurement postulates in addition the existence (in
the structure contemplated) of something referred to as Z in § 3. The existence of Z is
the condition that makes graduation an exact concept. Following Whitehead, we might
call Z a ‘basis of uniformity’; but it is more familiar in modern physics as a ‘metrical
field’. It is by conjunction with Z that observables acquire numerical characteristics
which seem more properly to belong to measurables. In the actual universe there
exists a basis which is uniform to a very high approximation, and this serves for almost
all purposes; but to the much higher approximation required in the calculation of N
the ideal exact basis of uniformity does not exist. The finitude of IV is, in fact, the cause
of the failure of the approximation. Tn the present investigation we must take account
* of the failure of the approximation; but we cannot throw over the two postulates which
have been based on the approximation, since these have become indissolubly asso-
ciated with the interpretation of measurement. I may again remind the reader that
- we are not determining the number of particles in the universe, but the number which
a physicist who accepts the elementary principles of measurement will (if he is con-
sistent) think there are—a number which he will consequently deduce from his measure-
 ments interpreted in the way in which he thinks they should be interpreted.

10. We distinguish between casual measures and standard measures. In a standard
measure one observable, called the object-observable, is arbitrary, but the other is a
special observable called the standard. Since the measures employed in systematic
investigation are almost always standard measures, it is necessary to give a precise
definition of the ultimate standard adopted. This is treated in D. §§ 2—6. It commonly
happens that concepts, which in classical physics are assumed to be exact, are found
in wave mechaniecs to have an irreducible uncertainty; and the standard is no exception.
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The physical universe does not provide an exact standard of length, mass, etc. But it
is shown in D. §2 that a universal standard can be defined whose variance is only
1//N, which is of order 1 part in 1039, There are three ways of dealing with the small
fluctuation of scale which results:

. (1) In molar physics it is neglected entirely.

(2) In microscopic physics, as developed in D, it is taken into account statistically.

(3) In the present fundamental structure theory it is taken into account rigorously
by using a non-numerical symbol to represent the scale of a standard measure,

The approximation (1) corresponds to the assumption that the symbolic scale reduces
- to an eigenscale; and the approximation (2) corresponds to the assumption that it can
be replaced by a probability distribution over eigenscales.

The approximation (1) is responsible for the practice of treating a standard measure
as though it were a characteristic of the object-observable only; for it is only if the
standard is exact and universal that we can afford to let it drop out of sign in this way.
If length, or mass, belonged only to the object-observable it would be an observe, not
ameasure. Thus the approximation leads to a displaced representation in which standard
measures are represented as observes; so that the observes have now the structure of
measures and are symbols with 16 eigenvalues. Thus, having obtained a measure 0-025 .
(a pure number) which belongs conjointly to a pin and a standard rod, we displace it
into an observe 0-0256 m. (not a pure number) which belongs only to the pin. To a certain
extentwe guard against confusion by recognising that the observe or displaced measure is
a dimensional quantity or tensor, whereas the true measure is a purely numerical tensor.

The fact that all dimensional quantities in physics arise from the displacement of
measures shows how deeply the system of physics has become committed to dis-
placed representation. Even when we find that it rests on an inadequate approximation,
we cannot undo the displacement; we must take account of the failure of the approxi-
mation in some other way. The observe must still be identified with an exact-scale
measure, i.e. a measure made with an exact and universal standard; but it is now only
an intermediary concept, since the ideal exact standard does not exist. In accordance
with the principle of measurement in § 9, the standard measure, i.e. the measure made
with the existent inexact standard, is interpreted as the ratio of two observes, nawely,
the exact-scale measure of the object-observable and the exact-scale measure of the
standard. .

Thus for practical application we must adapt the structure theory that has been
developed, so that standard measures and exact-scale measures take the place of measures
and observes. .

The measure concerned in the structure problem (the EF-number) is an energy
tensor, of which the density is a typical component; so we consider more particularly
the measurement of density. In displaced representation the exact-scale density
becomes an object-observe—agreeing with our usual conception of density as a dimen-
sional quantity residing wholly in the object-system. Allowing for inexactness of the
standard, the standard density, or density-measure, is the ratio p/p’ of two density-
observes, p being the exact-scale density of the object-system and p’ the exact-scale
density of the existent standard of density. Changes of the measure p/p’ may be true
changes dp of the object-gystem, or scale fluctuations 8(1/p’) due to inexactitude of the
standard. These changes cannot be observationally separated, because the exact scale
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necessary to measure p and p” does not exist. The observes are conceptual attributes
of the object-system and standard, inconvertible into measures except when the
structure furnishes a scale that reduces to an eigenvalue; but their ratio is a measure.

Extending this to the energy tensor as a whole, the tensor measure is the ratio of
two tensor observes 7, 7",,; that is to say, it is the fourth-rank tensor U?; defined by

Tpv = U;; T;'r' (18)

The standard measure is accordingly a fourth-rank tensor or ZFGH -number; and the
frame to be used in our final discussion is the EF GH-frame with grid number 2252

The corresponding measurable is an FFGH-number and has therefore 256 eigen-
values. In comparing this with our earlier conclusions, it must be remembered that we
are now working to what would ordinarily be considered a fantastically high approxi-
mation. For ordinary purposes a measurable has 16 eigenvalues; but under the super-
magnification here employed (which is not content to overlook 1 part in 10%9) there is
a fine structure which splits each of them into 16 components.

In conjunction with § 8, this result shows that the excess particle or particles forming
a microscopic object-system are added to a standard occupation of in = .22
particles. These belong to the standard environment or uranoid. We have now broken
the back of the problem, since 4# is roughly of the order of magnitude of the number
of particles in the universe. We must expect NV to be greater than {n, because in refers
to the occupation of a single measure. We can avoid treating more than one measure by
considering a universe in which all the particles are at rest and accordingly have the
same energy tensor; but in that case we shall have to introduce a factor (multiplicity
factor) to compensate for the constraint which is thereby imposed. The evaluation
of these final factors follows the same general theory (D. part ) that is used in my
determinations of the other natural constants.

11. Consider a uniform distribution of particles at rest in an arbitrary coordinate
system. Let o be the particle density (number of particles per unit volume) and p the
mass density or energy density. By general relativity theory,

8mkp = 8kl = @,

where x (the constant of gravitation) is a fixed natural constant, and the velocity of
light is 1. To represent a fluctuation of the standard of length, we put

ds? =g, dx,dx, = A“lg;,,dxﬂdxv,
4here the g;w are fixed numerical functions of the coordinates, and A has a small luctua-
tion about the value 1. Then g#* = Ag’#. The Christoffel brackets {uv, o'} are independent
of A, so that ¢, is independent of A. Hence G, and therefore p, varies as A. A volume
varies as ds? or A—%; so that o varies as A%, and therefore as pt. Hence

dp 2do
Pt T (19)

Tt should be noted that A, and consequently do, dp are symbolic,? the fluctuation being
expressed by the fact that they are not replaceable by definite numbers. If A reduces

& The analysis in §§ 4-8 was not limited to standard (as opposed to casual) measures; but it is evident
that the useful physical application is to standard measures. For there would be no interest in enumer-
ating the total number of casual measurables oceupying & given measure.

b We pass straight from the treatment (1) to the treatment (3) in § 10, the intermediate approxi-
mation (2) being foreign to our present methods. Thus we do not contemplate a probability distribution
over eigenseales, which would be the common way of describing a fluctuation.
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to an eigenvalue, the fluctuation disappears; and we have a fixed eigenscale which,
however, will generally differ from the scale A = 1 chosen as norm.

The change of particle density constitutes an apparent change of occupation. Since
there is no absolute scale, it is impossible to distinguish between ‘real’ changes of
occupation due to excess particles and changes due to scale fluctuation. We can there-
fore apply to scale fluctuation our previous results for excess occupation by putting

dojo, = K/in, . - (20)

K being the (apparent) excess occupation above the standard occupation }n.

We now transform to the usual displaced representation. This assumes that the scale
is an eigenscale, so that do and K reduce to numbers. Then p is interpreted as a density-
observe. If the particles are such that their densities (density-observes) are simply
additive, their number is proportional to the total density p; and the proportionate

change of occupation is dplp, = K [3n, (21)

by (19) and (20). Thus, taking K = 1, the addition of one particle increases the number
present in the ratio 1+ (§n)~1; in other words, the initial occupation of the density-
observe is $n.

This change of the initial oceupation from $n to §n is the result of transforming from
particles defined as the occupants of density-measures to particles defined as the
occupants of density-observes; or equivalently, from the occupants of standard
measures (which in the present high approximation are fourth-rank tensors) 0 the
occupants of exact-scale measures (second-rank tensors). The physical reason for such
a modification is easily seen. Suppose that we have a distribution of j, particles to-
gether with the possibility of an additional particle whose presence or absence is left
unsettled. By relativity theory the extra particle will, if it is present, change the
metric and hence the masses and densities of the j, particles. In rigorous theory one
unsettled element in the universe unsettles everything; nothing can be settled until
everything is settled. The current approximation, taking advantage of the fact that
in the actual universe the final scale is unlikely to deviate' more than 1 part in 10%® from
a certain exact scale, settles the scale first, and considers changes of energy tensor
referred to this fixed scale. Then the unsettled point is whether a certain net addition
to the energy tensor is present or not; and a new type of particle—a net, or quantum,
particle—is introduced as carrier of this addition. The net particle is the occupant of
a density-observe. It has a different nature from the relativity particle, since it includes .
in its own energy tensor those changes of energy tensor which relativity theory would
assign to the j, particles whose metrie it affects. The {» relativity particles have to be
replaced by $n net particles to provide the same initial energy tensor, assuming that
the energy tensors are additive.

But the energy tensors are not simply additive. If we add a large number of particles
so as to increase o and p substantially, A is altered; and the scale, even if it is an eigen-
scale, is not the normal scale corresponding to A = 1. If we repeat the procedure in the
last paragraph with j,+y particles certainly present and one unsettled particle, the
energy tensor of the net particle will differ from that of the net particle added to the
jo distribution. The general formula connecting j and p is therefore non-linear; though
it is, of course, sufficiently nearly linear in the very small range of scale comprised in
the scale fluctuation of the actual universe. The determination of the law of variation
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of p with j is a fundamental (though elementary) investigation in relativistic quantum
theory; and the result is used in many other investigations besides the calculation of V.
It is treated in D. §§9, 10. The result is that, when (as here) all the particles are in a
state of almost exact rest, or more generally when they are all in one pseudo-discrete
state, p varies as j—%, where k is the number of dimensions of the phase space, i.e. the
number of independent components of the measure capable of continuous variation.
In the present problem, & is the number of independent components of the complete

- energy tensor, namely 136. Thus dp/p, = —dj/kj, = —dj/j;, where

“Jo = kjo- (22)
We can therefore compensate for the non-linearity by changing the initial occupation
from j, to jg, i.e. from 3n to $nk.2

The argument requires care, otherwise we are lable to insert the factor % the wrong
way up. If X is the density whose initial occupation is j,, both referring to an exact
scale within the limits of fluctuation of the scale of the actual universe, we have
dp = Xdj, the linear law being valid for the addition of a very few particles dj.
It follows that p, = Xj, = Xkj,. Thus either we must assign the measure X% to the
. densities of the j, initial particles (which conflicts with the understanding that we
are discussing the total occupation of a measure X); or we must take the j, initial
particles to be measurables ¢#® of weight %, the dj excess particles being of weight 1.
We cannot admit any dissimilarity between the excess particles and initial particles,
i.e. between the object-system and the rest of the universe. The 37 particles of weight k&
are therefore to be replaced by their equivalent in particles of weight 1, namely, $nk.

The essential point is that the interpretation of measurement accepted in physies
saddles us with a displaced representation, based on an approximation which, if it
were exact, would involve a linear relation of p and j. It is therefore better to com-
pensate for non-linearity by a factor k before applying displaced representation,
rather than attempt to represent non-linearity directly (by weighting the measurables)
in displaced representation. The factor k& can alternatively be regarded as the com-
pensation for treating the tensor measure with & components as though it were a single
scalar measure (density). It is shown in D. § 10 that any continuous distribution of the
energy tensor over k degrees of freedom constitutes a multiple state equivalent to %
discrete states.

Our final result is that the standard occupation, to which an excess particle is added,
consists of $nk similar particles. Each particle, considered in turn as an excess particle,
is inserted in an environment of £nk particles; in other words, the universe consists of
3nk of these particles or their equivalent. The particles here enumerated are ocecupants
of, or carriers of, a basal measure (displaced into an observe) which is an unrestricted
complete energy tensor. These are the ‘standard carriers’ whose properties are de-
veloped in the author’s relativistic quantum theory. Itis shownin D.§§11, 12, that the
standard carriers are hydrogen atoms. (The hydrogen atom appears first in the theory,
and is analysed subsequently into a proton and electron.) The total number of protons
and electrons in the universe is therefore

N = 3nk = §.226 136, (23)

2 The negative sign attached to dj/jg which is important in some developments, does not affect the
present calculation. It involves a change of K into — K, and therefore a merely nominal change of the
measurable from ¢%¢ to ¢=%9, ’



EDITORIAL NOTE

In view of the references to the Dublin lectures in the foregoing Appendix, the
following table of correspondences between the Dublin lectures and the present
volame may be found useful.

D. P.T. D. F.T.
§1 §1 § 15 § 22
§2 §3 §16 § 25
§3 §4 § 17 §28
§4 §5 §18 §§ 27, 30
§5 §7 §19 § 33
§6 §§8, 9 § 20 § 32
§7 §11 § 21 § 37
§8 § 10 § 22 § 39
§9 §13 §23 § 40
§10 §15 § 24 § 51
§11 §17 § 25 § 41
§12 §18 § 26 § 42
§13 § 21 § 27 §47
§14 §19 § 28 §§ 49, 50
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A, the ‘observational’ system, 54, 57

absolute and relative chirality, 161

action, units of, 38, 216; integral, 238; invariants,
197, 239

active and dormant symbols, 161; inversion of
ideas of, 190

actual particles, 31

additive composition of symbols, 43

aether, and matter, 172; energy tensor of, 176;
strain system of, 183; stress in, 172

algebraie, 107

almost exacth state, 18

analogue of time in gquantum mechanics, 67

analogy, designation by, 153; in quantum me.
chanics, 59

analysis, linear and quadratic, 196

anchoring of frame, 113, 138

anchors, primary and secondary, 62

angular momentum, 66; as coefficient of rotational
elasticity, 216; co-spin, 205

antichiral double frame, 161

antiparticle, 176

antiperpendicular planes and components, 113, 272;

. rotvations, 114

antisgymmetrical, wave functions, 184; suffixes, 150

antisymmetry, spin and funetional, 185, 192

anti-tetrads, 108

antithetic, 123

association of strain tensors, and space tensors, 150;
and energy tensors, 171

atom, balanced, 199; complex, formation of, 212

average value of a characteristic, 147

averaging factor, 131

B (system of reckoning), 54, 57; the transformation
A - B geparates the electrical from themechanical
world, 64

B’ (gystem of reckoning), 61

balanced atom, 199

basal multiplicity, 37

Bernoulli fluctuation, 4

B, Bond factor, 38

bi-particle, 33, 194

Bond factor, 38

bound particle, 54

carrier, standard, 30, 276

casual measures, 279

catalogue of symbolic coefficients, 138

CD-frame, 166

¢’ D’ -frame, 167, 183 _

characteristic equation, of an H-number, 130; of
the symbols K, 270

characteristic, stabilized, 20

characteristics, additive, represented by exponents,
268

chirglity, 111; in molar physics, 126; of a double
frame, 161

" eircular and hyperbolic rotations, 123

circulation, extra-spatial, 50; of probability within
a state, steady, 73; transition, in interstate, 254

classical outlook and quantum outlook, 176

classical particles as V_,;, 41

closed algebra, 108

cogredient linkage, 168

coherent phase, 200, 278

collinear {Compton) scattering, 258

combined system characterised by outer product,
190

commutbation rules for F-numbers, 107

comparison, fluid, 174; hole, 43; particle, 41, 44

complementary field, 22, 23

complete, energy tensor, 30; momentum vector, 30,
112, 150; strain vector, 150

Compton scattering, 2568 ]

confusion between 7 (measure of under-observa.
tion) and ¢ (tims), 71

congruent spaces, 127

conjugate triads, 108

connectivity of measures, 269

conservation of mass for a fluid, 218

consgerved energy tensor, 179

constants, the microscopic, 66; molar and nueclear,
105

constraint, affecting energy, 69

continuity and isostasy, conditions of, 221

contracted Riemann-Christoffel tensor, 178

contragredient linkage, 168

contravariant space, strain, and wave vectors, 147,
148

control, molar and spectroscopic, 60; plane for
quantisation of co-spin momentum, 205

conversion consbants, 64

Corben, H, C., 76

correlation, of coordinates, 18; wave functiong, 19

correspondence, of strain tensors and energy ten-
sors, 171; of strain tensors and space tensors, 150

corresponding images, 110

cosmic rays, 214

cosmical constant, 78; identified with B,%, 178, 179

cosmical number N, 4, 105, 265

cosmical standard, 179, 180

co-spin, 164; intracules, 189; angular momentum,
205, 206; binding, 208; electrons in nueleus not
bound to protons individually, 202; magnetic
moment of co-spin intracule is zero, 250

Coulomb energy, 60, 66; between a molar and a -
microscopic charge, 64; makes allowance in the
wave equation for the effect of interchange
circulation on the equation of continuity of flow
of probability, 222, 230; term derived, 229

coupling of extracule and intracule, 249

covariant space, strain, and wave vectors, 147-9

cross-dual, 150, 166-9; of the classical energy
tensor Ty is the quantum or phase energy
tensor Z0, 181, 183

" erosged frame (C-frame), 255

cross-section for scattering of radiation by an
electron, 260

current, magnetic moment of hydrogen extracule,
249; masses of the intracule and extracule, 58;
maasges of the proton and electron, 34, 58, 62
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_curvature of space, 5; is a form in which molar
theory represents the mechanical part of ex-
clusion, 82

dagger defined, 143

darg defined, 217 |

Debye-Hiickel energy, 23, 99, 235

decay, problems of, 72

deflection determination of e/m,c, 64

degeneracy, is source of complication, 286 ; pressure,
90; symmetrical, 50, 228

delta-function in the energy of two like charges, 9,
101

designation by analogy, 1563

de Sitter universe, 175

density, molar, is scale-free, 18, 180 of top and

_ mean particles, 29; measurement of, 280, 281;
of mass, 138; of interstate connected with the
product of the densities of the two states con-
cerned, 242; of unit occupations, 17; is a momen-
tum vector, 15; term, condition for, 175

de-stabilisation, 43, 47

determinant of an E-number, 129

determination, (deflection) of e¢/m,c, 64; {direct) of
hfe, 64

deuterium, 63; as combination of double intracule -

and double extracule, 191; mass of, 197

deuteron, 136

dilution factor, 260

dimension index, 14; of physical quantities, 139

dipole transition probability, 258

Dirac’s interchange operator, 164

Dirac’s wave equation, 146, 223; its invariance
involves the phase coordinate, 72

direction of an extended vector, 130

directly linked frames, 160

discrete wave funetions, 19

dispersing system, conversion into a steady system,
259

displaced representation, 280

distinet particles, conception of, 273

distribution, funetions, 73; wave functions, 18

divergence of integrals in current wave mechanics,
23, 76, 262

dormancy and activity, inversion of ideas of, 190

dormant, characteristics, 30; components, 112;
symbols, 161

double, frame, 159, 276; transformation, 230; intrs-
cule, 191; matrix, 164; reckoning, 69; wave
function, 34, 52, 54; wave tensors, 168; wave
vectors, 167

doublets, isobaric, 202, 206 -

dual and cross-dual relations, 167, 176

duals, 164

¢’, charge of electron defined by molar control, 60;
value of, 66

€2 is a particle unit of action, 38

E-frame brought into physics, 113

E-number, 106; as a degenerate EF-number, 161;
matrix representation of, 141; representation by
quaternions, 121; representation by vectors in
4-space, 113

EF-frame, 159; its group of rotations, 271

EF-numbers ave space tensoxs of the second rank,
272

effective relativity transformations, 117

Index

-eigen-energies of states are classically eigen-scales,

157

eigenscale, 222; condition that 9/dx, reduces to an
eigenvalue, 227

eigenstates of an intracule, transitions between,
254

eigensymbol, of yes-no existence symbol 267; of a
symbol, 130

eigenvalue, of angular momentum in £-space, 222;
of the field energy --¢% 8/0z,, 221

eight simple particles are necessary for balancing,
200

Einstein-Bose, pa,rtioles defined, 277; occupation
factor ¥, 278

Einstein universe, 5, 13; mass of, 10

electric, force between elements of the same
elementary charge does not exist, 2562; moment,
246; potential, retarded, 252

electrical, characteristics, 30; and mechanical phe.
nomena, separation between, 185; (interchange)
degree of freedom, 56; part of a momentum
vector, 138; part P, is antithetic to the me-
chanical part P,, 127; theory, 19; charge,
symbolic coefficient for, 138

electromagnetio, characteristics, 111; field, irre-
ducible, created by non-integrable gauge trans-
formation, 243; field, molar, 236; potentials, 234

electron, in electromagnetic field, wave equation. of,
234; magnetic moment of, 245, 247; moving,
radiation by, 252; multiplicity of, 245; origin of
its mass, 84; perturbed, hamiltonian of, 233

electrostatic potential, symbol for, 138

energy, of a quantum particle, 28; of a wave packet,
69; of interaction of object-particles with one
another is part of the particle energy, but inter-
action with the environment is field energy, 40;
non-Coulombian, 9, 23, 101; quantum, is a
classical scale, 222; stabilised in micro space, 154;
zero level of, 53

energy tensor, 15; conserved, 179; correspondmg
to unit oecupation, 45; extended, of 256 com-
ponents, 160; relation to phase tensor Z_, 171;
of a relativity particle, 28; of the aether, 176;
(strain tensor} of the planoid, 176; syrometry
and antisymmetry in, 171 :

entity, most primitive, 266

environment, 13; and the frame, 127

equivalence, the principle of, 244, 246

equivalent, double frames, 159 sets of Z-numbers,
109

exact, properties are unobserva.ble, 44; scale
measures take the place of observes, 280; state, -
almost, 18

excess, measurables, 276; of oecupatmn, 270

excludees and excludors, 204

exclusion, energy, equivalent to gravitational, 82,
97; holds between symmetrical as well as between
antisymmetrical wave functions, 195; lateral,
204 ; principle, 29, 81; tregtment and spin treat-
ment, connection between, 206 '

existence represented by J, 267

existence gymbol, 267

expansion energy, 69, 73

expectation value, 147, 218

expected particle energy, 28

extended, energy tensor, 30, 160; energy tensor,
analysis of, 194; momentum vector, 30, 112
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external, particle, 32, 43; comparison particle is &
nean particle, 44; and internal particles, trans-
formation of equal masses into, 231; wave
functions, 19

extinguishing of electrical energy by balancing of
intracules, 200

extracule, 19, 51, 247; and intracule, treatment as
independent particles, 250

extraneous object-field, 22

extraordinary fluctuation, 5

extra-spatial circulation, 50, 66, 73, 218, 221

factorisable F-numbers and matrices, 144

factorisability is condition for purity, 145

factors, determination of, 145

Faraday constant for hydrogen, 60, 85

Fermi-Dirac occupation factor, 278

Fermi-Thorhas treatment of satellite electrons, 207

fictitious particles, 31

field, 23; and particle angular momentom are
called orbital and spin momentum in current
theory, 206; angular momentum, 216, 217;
energy, 23, 25, 27, 69; gravitational and inertial,
14; linear momentum operator, 216; momentum
vector, 147; momentum vector is a multiple of
the particle momentum vector, 219; must be
stationary for small changes of the occupation
factors of the eigenstates, 24; theory, 22, 196

fifth dimension, representation of the phase co-
ordinate, 46

final vector ¥, 145

fine-structure constant, 37, 66, 67, 229; why it is
137 rather than 136, 216

five-dimensional theory of physical variates, 114

fixed-scale, unit, 139; provided by quantisation
transferred to classical description by interstate
tensors, 256

flexibility of occupation, 24

flow of probability, equation of continuity of, 218

fluctuation, Bernoulli, 4; ordinary and extra.
ordinary, 5

forbidden osecillator, 212; is a mesgotron, 213

force-congtant {ratio of electrical to gravitational
force between a proton and electron) calculated,
105

forces, range of nuclear, 9

formal relativity rotations, 123

four dimensions, passage to five dimensions, 128

fourth-rank wave tensors, 149

frame, 109, 127; crossed (C-frame), 255; double and
quadruple, 276; singular, 100; anchoring in
molar physics, 138; is the operational form of
the momentum vector, 147; of opposite system,
111

free, information, 19; intracule, §3; double intra-
cule, 191; particle, 54

full equivalence of frames, 121

fully observed system, 71, 73

functional antisymmetry, 185 192

" fature, the, 135

galaxies, recesgion of, 10

Galilean time, 67

gauge, identified with imaginary electromagnetic
potential, 237; invariant vector is covariant
momentum vector for state and contravariant
momentum vector for interstate, 256; invariant

287

tensors, 238; transformations, 236, 241; trans-
formation, uniform, is a gcale transformation, 244

generation of H-numbers by a tetrad, 109

generic energy tensor, 28, 33

geometrical angle introduced in development, 271

grad defined, 217

graduation, 278

gravitational, and inertial energy distinguished, 97;
energy, negative, 97; field, 14; created by non-
integrable coordinate transformation, 243; field
replaced by exclusion field, 29, 86; the constant
calculated, 104

grid, 275-8

ground state of hydrogen, 187

group, of rotations with 16 eigenvalues is the group
of rotations of an KF-frame, 271; structure of
E-numbers, 107

gyromagnetic experiment, 249

%, field unib of action, 38, 216 _

h, Planck constant, calculated value of, 66

Hamiltonign differentiation, 27

hamiltonians, for standing and progressive waves,
87, 91; of an electron perturbed by other
electrons, 233

harmonics, surfaee, of hypersphere, 85

helium atom, mass of, 199 .

hole, comparison, 43

homochiral double frame, 161

homothetic, 123

hydrocule, defined, 54; is & V3, and is a hydrogen
atom, 56; is the Vyy of system B, 57

hydrogen, all matter is cornposed of, 64; atom is a
combination of a spin intracule and an extracule,
189; magnetic moment of, 247; mass of, 66;
separation into two carriers, 33; Sommerfeld’s
formule for the states of, 225; imtracule, wave
equation of, 222; metastable states of, 50, 186;
ground state of, 187; unstable states of, 188;
solution of the wave equation of, 224; universe
composed of, 277

hyperbolic and circular rotations, 123

hypersphere of space, surface harmonics of, 85;
voliume of, 47

¢ faetor in symbols, 139

idempotency, 181; imaginary, 134

identities, the tensor, 177

image of an idempotent quantity, 132

images, 110

imaginary, and real H-symbols, 120; idempotency,
134; in quantum theory, its source, 40

incoherent phases of wave functions, 200, 278

indices of wave tensors, 242 _

indistinguishability of particles begt understood if
we think of them as carriers, 49, 51

individuality of a particle, 131, 278

ineffective rotations, 116, 159

inertial, field, 14; and gravitational energy distin-
guished, 97

infinite, negative charge of Dirac’s theory, 84;
temperature uranoid, 77; transverse energy of
an electron fallacious, 76

information, free, 19

in-invariants, 240

initial, energy, elimination of, 94; particles, 32;
state, 27; vector ¥¥, 145
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integrals invariant for both coordinate transforma-
tions and gauge transformations, 238

interchange, 49; and exclusion representations of
rest mass, relation between, 263; applicable to

proton-electron system, 50; circulation, extra-
spatial plane of, 66; energy, 50, 56; energy as

energy of transition circulation, 262; energy
appears as perturbing energy in the hamiltonian
of an electron, 232; momentum, 227; operator,
162; operator, Dirae’s, 164; representation,
connection with gravitational representation of
energy, 263; variates are the scale and phase of
the relative space, 152

intermediate relativity, 12, 236

internal, particle, 32, 34; wave functions, 19

interstate, and state energy tensors, relation
T o0=2Zy" between, 241; circulation, described by
an energy tensor, 182; conjugate, 254 ; defined as
a steady circulation of probability between two
states, 182; density of, connected with the
product of the densities of the two states con-
cerned in it, 242; energy, 89; wave function of,
259; (continuous transition circulation), 67

intracule, 19, 51; and extracule, treatment as
independent particles, 250; double, is the com-
bination of & spin intracule and a co-gpin intra-
cule, 191, 193; essential part is the gquantum
angular momentum (classical magnetic moment),
188; its quantum momentum vector is essentially
a strain vector, 155; magnetic moment of, 247;
multiplicity of, 191, 194; wave equation of, 245;
transitions between eigenstates of, 255; two-
legged, carrying transition energy, 201; n-legged,
185; spin and co-spin, 189

inversion of energy, 29, 39

isobaric, atoms, 207; doublets, separation constant
of, 205

isostasy and continuity, econditions of, 221

isostatic compensation, 219; as regards phase and
time derivatives, 256; provided by radiation
field, 259

isotopic spin, 1386; is the controlled component of
co-spin angular momentum, 206

J, symbol of existence, 267

keenness of probing, specification of, 70
Klein-Nishina formula for scattering, 261

lateral exclusion, 86, 203
left-handed frames, 111
length, standard of, 7, 15

light velocity, is constant, 8; its value, 65; in rigid

coordinates is 137¢, 259

like charges, energy of two, 99, 101

linear (super-threshold) and quadratic
threshold) analysis, 196

linkage, cogredient and contragredient, 168

Lsts of constants, mieroscopic, 66; molar and
nuclear, 105

local, energy, 68; uncertainty of a physical reference
frame, ¢

longitudinal field, 234

Lorentz, frames, equivalence of, is included in equi-
valence of E-frames, 110; transformation is con-
trary to the spirit of wave mechanies, 73; trans-
formations ineffective in statistical physics, 117

{sub-
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m,, mass of electron, 34, 66

g, mass of standard carrier, 33, 42, 66; absolute
determination of, 81 ; determination by exclusion
theory, 85

m,, mass of proton, 34, 66

u, mass of hydrogen atom, 33, 51; absolute deter-
mingtion of, 81 . .

magnetic, energy, 138, 205; moment, 135, 138, 245;
momenta are components of the extended
momentum vector, 179; moment of the hydrogen
atom, 247; moment of the neutron, 251

magnetisation, permanent, 246

magneton, nuclear, 249

magnitude of an extended vector, 130

mass, and momentum vector are scale-fixed charac-
teristics, 18; as a mutual property, 261; constant
of a particle, 53; defects of nuclei of mass
number from 30 to 150, 210; differences of, are
due to multiplicity factors improperly absorbed,
175; of scale-free particles transforming as
dengsities, 119; relativity definition of, 68; of
deuterium atom, 197; of Einstein universe, 10;
of electron, 34, 66; of extracule is molarly con-
trolled, 60; of infracule is spectroscopically
controlled, 60; of helium atom, 199; of mesotron,
211; of proton, 34, 66; of standard particle, 81,
85; origin of, 77, 83, 95

matrix, double,164; representationof H-numbers,141

mean particle, energy tensor of, 28, 37

measurable, defined, 48, 266; in EF-frame are
wave systems in spaces with antiperpendicular
axes, 275; primitive, symbolic representation of,
268; set of alternatives of, when the measure is
given, is a grid, 273, 275, 276; identified as
gtandard particles, 273; tensor, 268; true, a
combination of the measurable and Z, 269

measure, is the ratio of two observes, 279; tensor,
268; X, defined, 272; casual and standard, 279

mesasures, connectivity of, 269; exact-scale, take
the place of observes, 280; pure, 274

mechanical, characteristics, 111; components of a
vector, physical interpretation, 124; momentum
vector, 137; theory, 19

meson-field hypothesis, 10, 211

mesotron (cosmic ray), nature and mass of, 213;
heavy, 214 ]

metastable states of hydrogen, 50, 186

metrical field Z, 279

miero, point of view, that the intracule is a compact
particle, 155; space, 154

microscopic constants, list of, 66

modularly equivalent systers, 190

molar, and nuclear constants, list of, 105; charac-
teristics of an assemblage depend on the mean
particle, 29; definition of mass, 856; electro-
magnetic field, 236; point of view that the wave
is the intracule, 155; relativity as field theory,
38; space, 154

molarly controlled quantities, 59

momenta, as coefficients of elasticity, 216; are
relations between entities, 217; directions of,
indicated by symbolic coefficients, 67; to be
inserted in wave equation, 67

momentum, and its conjugate coordinate are homo-
thetic, 138; and position vectors as H-numbers,
124; and position vectors as vector-densities in
a sub-gpace, 116; density, 138; in wave mechanics
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s ¢ times the corresponding classical momenturn,
33, 37; operator defined, 216; strain vector is a
hermitic matrix, 143; term, condition for, 175;

vector, 15, 36, 106; vector, field and particle, 147

monochiral uranoid, 126

monothetic, 123

motion, conception of, 119

&, mass of intracule, 33, 42, 51, 66

multiple occupation indieated by wave-length and
not by coexistence of phases, 277

multiplets, isobaric, 206

multiplication, different for CD-symbols and EF-
symbols, 166; table of E-numbers, 107

multiplicative and additive composition of systems,
43, 136

multiplicity factor, 26; decides the partition of the
energy tensor, 29; decided by the energy tensor
or momentum vector alone, 39; as selection
factor, 29, 195; relative to the adopted system
of classificatory characteristics, 98

multiplicity, of the intracule, 191; of comparison
particle, 42

mutual, energy carrier, separation into two carriers
of self energy, 42; prop erties and self properties,
41

N, cosmical number, 10, 105, 265, 283

natural units, 14

nebular recegsion, 10, 105

negative energy levels, 83

negatron, origin of, 84

neutral space-time, 125

neutrino, emitbted when a co-spin is changed into
a spin intracule, 190; absorption of, 193

neutron, as indivisible particle, 250; is a combina-
tion of & co-spin intracule and an extracule, 189;
magnetic moment of, 251; mass of, 191

n-legged intracule, 185

non-Coulombian energy, 9, 23, 101; is an adjust-
ment which allows us to simplify a 4-particle
system into a 2-particle system, 102

non-singular E-numbers, 109

non-trivial idempotent vector, 132

normal state, defined, 70

normalisation of wave functions, 218

normalised vector, 130

nuclear, and molar constants, list of, 105; forces,
range of, 9; magneton, 249; planoid, 208; theory,
starting-point of, 191; theory, list of contribu-

- tions of fundamental theory to, 211; trans-
formations, energy loss in, 80

nucleus, constitution of, 202; co-spins in the, 206;
radius of, 207

number of particles in the universe, 10, 105, 265,
283 :

- object-field, 22
object-particle is always a top pa.rtlcle in quantum
transitions, 29
object-system, 13; perfect, 44
observable, 1; definition of, 266
observe, 279
occupation, excess of, 270; multiple, indicated by
wave-length, 277
occupation factor, 17; the only function of the time
coordinate, 73; continuous, 26; Einstein-Bose,
277; Fermi-Dirac, 278
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occupation operand, 270; qualitative and quantita-
tive, 277; symbol, 270, 277

operational form. of a characteristic, 147

operator, expectation value of, 218

opposite systems of frames, 111

ordered volume, 118; symbol for, 138

ordinary fluctuation, &

orientation phase space, 151, 170

origin, geometrical and physical, 1, 3

orthogonal projection, 11

oscillator, 3-dimensional, 258; forbldden, 212; for-
bidden, is a mesotron, 213; occupying interstate
between two states, 182, 254; simple pure,
defined, 182 ‘

outer product of two vectors, 160; is the straight
product of their duals, 166

parallel displacement of vectors, 236

partial existence, 267

particle, actual and fictitious, 31; angular momen-
tum, 216; and field angular momentum are called
gpin and orbital momentum in ourrent theory,
206; classical, is insertion in the aecther, 176;
defined, 30, 274, 277, 282; density is & momentum
vector, 15; Einstein-Bose, 277; energy and total
energy, 25, 37, 39, 69; energy, expected, 2§;
energy tensor, 23, 27; individuality of, 278;.
momentum in secale-fixed physies, 38; momentum
vector, 147; momentum vector is solenocidal, 218;
ocoupying a pseudo-discrete wave function iz an
unidentified member of a large assemblage, 17;
of quantal physies is carrier of momentum vector,
18; of scale-free physics is carrier of energy
tensor, 18; pure, 137; guantum, 24; relativity, 24;
scalar, 136; simple (spinless), 20; theory begins
with the standard carrier, 272; transformation of
two of equal masses into external and internal
particles, 231 ; transverse selfenergy of, 261 ; which
carries no coordinates, 39; which has comparison
particle has electrical characteristics, 43

pentad, 108; part of idempotent vector, 133

perfect object-system, 44, 179

permutation coordinate, 49, 66; introduces inter-
change energy, 56

permuting suffixes of wave vector factors, effect of,
150

perpendicular components, 113

persistent components, 158

phase, defined, 275; and scale, 46, 72; is the time
analogue in the analogy between guantum and
classical mechanies, 72, 154, 227; space, 20, 26,
150, 169; sub-coordinates, 275; tensor, is a strain,
tensor, 170; tensor, is the quantum energy tensor,
184; tensor, is the cross-dual of the classical
energy tensor, 171, 181

physical interpretation of the 10 mechanical com-
ponents of a vector, 124

physics, nature of, 2669

piles, 164

plene, of interchange circulation extra-spatial, 66;
of relativistic rotation, 50

planoid, defined, 93; energy tensor {strain tensor)
of, 176; the nuclear, 208

position and momentum vectors as &-numbers, 124

positive and negative charges correspond to P and
Pt 111

positron, origin of, 84
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potential, electrostatic, symbol for, 138; eleetro-
magnetic, 234 ; retarded electric, 252

predictive theory, 2; and structural problems, 72

pre-history of the E-frame, 120

. pressure, 77, 138; degeneracy, 90; term, condition
for, 175

probability, distribution of momentum is deter-

_ mined by probability distribution of coordinates,
79; distribution over a set of states, 181; extra-
spatial flow of, 50, 66, 73, 218, 221; equation of
continuity of flow of, 218; of existence, 267;
transition, 254

probing, specification of keenness of, 71

product, outer, of two wvectors is the siraight
product of their duals, 166

progressive and standing waves, 87, 91

projection, orthogonal, 11

proper mass, explanation of, 54, 78, 96

proper phase, analogous to proper time, 227

protons, energy of two, 10, 99, 101

pseudo-diserete states, 17

pseudo-individuality, 131

pseudo-rotations, 114, 170

purs, measures, 274 ; oscillator, simple, 182; particle,
137; particles, momentum vectors and momen-
tum strain veetors of, are factorisable, 144;
particle, its proper mass, spin, and magnetic
moment, 146

g, definition of, 167, 170
quadratic (sub-threshold) and linear (super-
threshold) anelysis, 196, 240

quadruple frame, 162, 276; probability distribu-

tion, 48

quantal theory, 16

gquantisation, 19

quantum-classical analogy, 153, 155, 183

quantum, energy is a classical scale, 222; energy
tensor is classically & strain tensor and is the
cross-dual of the classical energy tensor, 183;
jump, 50; momentum vector is oclassically a
strain vector, 183; numaber of a level, 85; outlook
connected with classical outlook, 176; particles,
24; specified standard, 8, 180; theory uses a
covariant momentum vector, 255

quarterspur, 107; of an EF.number, 166

quaternion. algebra, the algebra of F-numbers is
the square of, 121

R, Einstein radius of space, 6, 10, 81, 105

radiation, necessary to maintain steady occupation
of two quantum states, 256; of momentum by
a moving electron, 252; quantum theory of,
234

range eonstant of nuclear forces, 9, 102, 105

rank of extended space vectors and tensors, 150;
of idempotent E-numbers, 136

ratio of masses of proton and electron, 34, 66;
alternative derivation, 42; spectroseopic deter-
mination, 62

reality conditions, 120-4; for strain vector, 127;
in conmnection with gauge transformations, 237;
relative and absolute, 156

recalcitrant, terms, 184, 256; energy tensor Z,;, 185

recession of the galaxies, 10, 105

recoil, interpretation of the Reimann-Christoffel
tensor in terms of, 173; momentum of the
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physical origin, 75; symmetrical, corresponds to
a de Sitter universe, 176

reduction of the 5.spaces of extracules and intra-
cules to 4-spaces, 152

reflection, 275

relative, and absolute chirality, 161; and absolute
reality conditions, 156; space, 1562; and ordinary
space, digbinction between, 222

relativity, intermediate, 236; particles, 24; rota-
tions, 50, 110; rotations in molar space-time, 160

representation, displaced, 280; space, 26

resolution of rotations into simple rotations, 114

rest-mass of a particle, 54, 78; represented ag
energy of interchange with particles of environ-
ment, 96

retarded electric potential, 252

Riemann-Christoffel tensor, 173; symbolic form of,
175; extended, is the same as the extended
energy tensor, 176, 179; contracted, 178

right-handed frames, (#g=1%), 111

rigid, coordinates, 35; field, 23; field, a particle has
a momentum which is 4 times the classical
momentum, 40; time, 67

root vector, 31

rotations, 110, 112, 159; ineffective, 159; in the
15 coordinate planes in FRuclidean space of
6 dimengions, 107, 115; plane of relativistic, 50;
transforming the 136-dimensional phase space
into itself, 170; which give full equivalence, 121

Rydberg constant for hydrogen, 8, 58, 65

scalar particle, 136

scale, and phase, 47-8; and phase, as the fourth
dimension, 72; as a rnomentum, 46; fixed physics,
16, 19; free physics, 16, 19, 26; free physics Hes
between cosmical and quantal physics, 180;
indicator, 46; momentum, 47, 275; of a standard
measure represented by a non-numerical symbol,
280; true, 26; uncertainty, 15, 44

scattering, collinear (Compton), 258

second order wave equation, 245

secondary anchors, 62

selection factor, 84; for planoid, 97

self, energy, transverse, of a particle, 261 ; properties
and mutual properties, 41

semi-classical particles are V; particles, 41

set, spectral, 135

o, uncertainty constant, 3, 67, 81, 102

o, standard deviation of ¢, 6; is the standard
deviation of the scale momentum, 46

simple pure oscillator, 182

simultaneity, 119; implied in coneception of a
system, 163

singular, H-numbers, 109; frame, 100

Sirius, companion of, 31

six-dimensional representation of the group- struc-
ture of the E-frame, 115

solenoidal property of particle momentum, 218:

solution of the wave equation of hydrogen, 224

Sommerfeld’s formula for the metastable states of
hydrogen, 187; more genersl formmula for the
states, 225

space, congruent, 127; is restricted to 8 dlmensmns,
124; spherical, 6, 10, 98; tensors, 168; vector,
145, 168; vector is a mixed wave tensor of the
second rank, 148; wvectors, outer product of,
160
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special relativity, rotations ag rotations of #-frame,
113, 123; transformations of, are included in
transformations of H.numbers, 110; time axis,
167 :

specification, 43

spectral set, 135

spectroscopic determination of m,/m,, 83

spectroscopically controlled quantities, 60

spherical space, 6, 10; non-integrability of states
in, 98

spin, 164; and co-spin intracules, 189; angular
momentum, 66; antisymmetry, 185, 192; factor
of I (Dirac’s interchange operator), 233; isotopic,
136; isotopic, is the controlled component of
co-spin angular momentum, 206; theory, 106;
treatinent and execlusion treatment, 206

spinless particle, 8 V; or ¥V particle, 20; a fictitiously
gimplified element of physical structure, 32

spur, 143

spurred and spurless B-numbers, 107

stabilisation, 19, 34

standard carrier or Vi, particle, 31, 37, 276;
eurrently described as composite, 32; division
into two carriers, 34; an unspecialised element of
the energy tensor of the uranoid, 45; particle
theory begins with, 272

standard, environment, 30; form of a non-trivial
idempotent vector, 132; magnetic moment of
hydrogen extracule, 248; masses of the proton
and electron, 34, 58; measure, 279; measure, is
a fourth-rank tensor, 281; of length, 15; particle,
identified with hydrogen atom, 55; particle, is
the Vg of system 4, 57; quantum-specified and
cosmical, relation of, 180

standing and progressive waves, 87, 91

star cluster, 40

Stark effect, 264

starred vector ¥, rule for multiplication, 145

state, circulation, 182; defined as a steady distribu-
tion of probability, 181; defined as any combing-
tion of distinetions or varigtes, 277 ; and interstate
energy tensors, relation %y, =270 between, 241;
metastable, of hydrogen, 186; unstable, 188

statistical theory, 106

steady system, of particles oceupying states and
oscillators ocecupying interstates, 182

Stoner-Anderson formula eriticised, 89, 92

straight dual defined, 150

strain system of the aether, 184

strain tensors, 168; and space tensors, 150; deriva-
tion from energy tensors by °‘correspondence’
and by ‘association’, 171; derived from space
tensors by dual and cross-dual relations, 167; in
guantum theory and relativity, 172

strain vector, defined, 117, 148; importance of, 119;
expressed as an HF.number, 161; reality con-
dition for, 127

straing, 110, 114, 117

stream vector, 218, 244

structural, and predictive problems, 72; concepts,
139; theory, 2

structure, problem, 270; quantum-specified, 8

sub-coordinates, phase, 275; two hundred and
fifty-six, 276

sub-threshold theory, 83, 84; is exclusion theory
and pre-gravitational, 195

suffixes of wave vector factors, effect of permuting,
150
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summation convention, 143

sguper-dense matter, 87

super-threshold, particles, 84; theory is gravita-
tional theory, 195

gymbolic, coefficients, catalogue of, 138; frame, 106;
frame, anchoring in molar physics, 138; frame
is the operational form of the momentum
vector, 147; representation of the most primitive
measurable, 268

symmetrical, degeneracy, 850, 228; EF-numbers,
165; recoil corresponds to a de Sitter universe,
176; wave functions correspond to pressure
components of 7', 184

gymmetry and antisymmetry in energy tensor, 171

system, congeption of, implies simultaneous con-
stituents, 1563 ; is represented symbolically as the
product of its parts, 268

systems 4 and B of reckoning energy, 54; modularly
equivalent, 190

Pogs To0 T, T, notation for covariant, mixed,
and contravariant space tensors, 149

X, cross-dual, defined, 166

T, (pressure components of ) eorresponds to
symmetrical wave functions, 184

Ty (density components of 7} corresponds to anti-

- symmetrical wave funections, 184

7', dual, defined, 164

7, the measure of under-observation, 71; peculiar
to predictive theory, 73

temperature in relativity theory, 77

Temple’s symbolic treatment of Dirac’s wave
equation, 223

tensor, dengities in four dimensions, 115; gauge-
invariant, 238; identities, 177; measurable and
measure, 268

tetrad, 108

third-rank tensors, evaston of, 161

three-dimensional oscillator, 258

three-dimensionality of space, 124

threshold energy, 84 )

tiers, 164 g

tilt, of plane of angular momentum with respect o
the adopted reference frame, 163; of the radius
of curvature of a uranoid, 126; $ime, 186; of the
plane of a motion, 50

time, analogue of, in quantum mechanics, 67; axis,
special, 167; -like variable in wave functions is
the phase, 73; rigid and Galilean, 67; in wave
mechanics, 37; -tilt, 186; three kinds of, 72

top particle, 28; takes part in quantum transitions,
29

transformation, of & double frame from BF to GH,
230; of probability distribution of physical
momenta into probability distribution of geo-
metrical momenta, 74; of two particles of equal
masses into external and internal particles, 281

transition, between eigenstates of an intracule, 254 ;
circulation between substates provides the
Coulomb term, 230; circulation in interstates,
254; energy, 28, 33; energy, whole energy
exhibited as, 94; flow corresponds to classical
conception of momentum, 182; flow is eoupled
with a recoil flow, 182; forbidden between states
corregponding to symmetrical wave functions
and states corresponding to antisymmetrical
wave functions, 184; probabilities, 254; prob-
abilities, formula for spontaneous dipole, 258
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transpose of a matrix, 164 -

transverse, or radiation field, 234; self energy of a
particle, 261

trivial idempotent quantities, 132

true, measurable, a combination of the measurable
and Z, 269; representation, 142; representation
of H-numbers by matrices, 121; rotations trans-
forming the 136-dimensional phase space into
itself, 170

two-frame transformation, 230

two-legged intracule carrying transition energy,
201

two-particle system, 32; transformation can be
applied legitimately only to a hydroculs, 57

two protons, energy of, 10, 99, 101

uncertainty, constant o, 3; local, of a physical
reference frame, 6; scale, 6, 15, 44

under-observation, 71

uniform, distribution (infinite plane waves), 39;
‘gauge transformations, 241; observation, 153

unit, natural, 14; vector, 130

unitary transformations, 151

universe, Einstein, 5, 13; mass of, 10

unobservables, 1

unstable states of hydrogen, 188 .

unsteady wave functions are unnecessary, 73

uranoid, 13; as a pseudo-discrete assemblage, 30;
infinite temperature, 77; monochiral, 126, 128;
stresses produced by particle in, 171

V. & quantum particle of multiplicity %, 20

Vi, and Vy,, relation between masses of, 29

V437 particle carries an energy tensor and a permu-
tation variate, 56; is a hydrocule, 56

V5 particles, 79, 97

V, particles, 80

V3, Particle or vector carrier, 32

vector, in micro space.is strain vector of molar
space, 155; physical interpretation of its ten
mechanical components, 124; wave funection is
not the same as a wave vector, 217

velocity, of light is constant, 8; of light in rigid
coordinates (137¢), 259; of a particle in wave
mechanics is group velocity, 36 ; reference systern
for, provided by matter but not by aether, 172;
symbols for, 138

vertical and lateral exclusion, 86

volume, element in three dimensions, ree1procal of,
is & 4.vector with symbolic coefficient H,;, 118;
element in phase space, 152; of uranoid, 47

wave, an extended probability distribution is often
described as, 155; and particle aspects reconciled,
155; identities, 140

wave equation, defined, 220; for an electron in a
molar electromagnetic field, 234; its function is
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to determine a field momentum 4-vector iso-
statically compensating the corresponding part
of the particle momentum vector, 234; of
hydrogen, solution of, 224; second order, 245

wave function, and wave vector, contrast between,
21%7; confined to statistical mechanics, 72; corre-
lation and distribution, 18; degrees of freedom
of, 39; discrete, external, and internal, 19; of an
interstate, 259; normalisation of, 218, 244

wave mechanics, based on concept of rigid ﬁeld
23-4; new approach $o, 89

wave tensor, caleculus, 106; indices of, 242; of the
second rank, 146; of the fourth rank, 149;
double, 168

. wave vector, 72; defined, 145; transformation law,

147; double, 187; and wave function, contrast
between, 217; with its underlying isostatic com-
pensation is represented by a wave function, 220;
normalisation of, 244

weight function for converting distribution of
geometrical momenta into a distribution of
physical momenta, 76, 263

Weyl, attempt to provide a cosmical standard, 180;
gauge vector, 236

widening factor 2m, 47

‘Wigner, theory of the nucleus, 205

x,, fifth coordinate in position vector, 125
yes-no category of symbols, 267 -

Z, quantum energy tensor or phase tensor, 171,
' 184, 195; systems for which Z consists of pressure

terms only, provides overlap of relativity me-
chanies and symbolic mechanies, 181

Z0, Z%, mixed strain tensor, 149; is cross-dual
of energy tensor T'y,, 181; factors of, are quantum
momentum vectors, classically strain vectors,
but space vectors of micro space, 243

Z,, strain produced by particle in aether, 171; is
strain tensor when 7' is the energy tensor of a
relativity particle, 172

Z,, strain produced by particle in uranoid, 171; is
strain tensor when 7' is the energy tensor of a
quantum particle, 172

Z,,, momentum terms of Z, inhibited by condition
of symmetry, 181; carrier of, is called a forbidden
oscillator, 212
Z,, pressure terms of Z, 184; is energy tensor of
double extracule, 194 ; is mechanical energy, 195
212

Z,, density terms of Z, 184; is recalcitrant part of
energy tensor, 185, 195; corresponds to double
intracule, 194; ig electrical energy, 195, 212

Z, metrical field, 269, 279

Zeeman effect, 254

zero level of energy, 53
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